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ABSTRACT: The surge in industrial activities, notably in sectors such as textiles, leather processing, and paper manufacturing, 

has led to a considerable rise in synthetic dye discharge into the environment, posing significant threats to ecosystems and 

human health. Traditional wastewater treatment methods have struggled to effectively address dye pollution due to the complex 

nature of these pollutants. In response, biochar has emerged as a promising solution, offering unique physicochemical 

properties that make it an excellent adsorbent for dye removal. This review explores the role of biochar in dye removal, 

focusing on its surface properties, production methods, and adsorption mechanisms. Biochar's extensive surface area, porosity, 

and surface functional groups play crucial roles in facilitating dye adsorption. Various production methods, such as pyrolysis, 

hydrothermal carbonization, and superheated steam torrefaction, influence biochar properties and effectiveness in dye removal 

applications. Surface modification techniques enhance biochar's dye removal capacity and regeneration potential, enabling its 

reuse in wastewater treatment. Moreover, the surface charge of biochar influences electrostatic interactions with dye molecules, 

affecting adsorption efficiency. Understanding biochar's surface charge is essential for optimizing dye removal processes. 

Overall, biochar holds promise as a sustainable and efficient adsorbent for mitigating dye pollution, offering valuable insights 

for environmental remediation efforts. 
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1. INTRODUCTION 

In recent years, industries such as textiles, leather 

processing, and paper manufacturing have experienced rapid 

expansion, leading to a significant increase in the discharge 

of synthetic dyes into the environment [1, 2]. This influx of 

dyes poses a serious threat to aquatic ecosystems and human 

health [3, 4]. Synthetic dyes are known for their persistence, 

toxicity, and non-biodegradability, making them particularly 

challenging to address once they enter water bodies. 

Traditional wastewater treatment methods, including 

chemical, physical, and biological approaches, have 

struggled to effectively treat dye-containing wastewater due 

to the complex nature of these pollutants. Currently, there is 

a surge of ongoing research directed towards the effective 

removal of dyes from wastewater [5–7].   

In response to the urgent need for sustainable and 

efficient methods to address dye pollution, biochar has 

emerged as a promising solution. Biochar is a carbonaceous 

material produced from the pyrolysis of organic biomass 

under oxygen-limited conditions. This process results in the 

production of solid (biochar), liquid (oil), and gaseous 

products. Biochar is a valuable material that can be utilized 

as a soil additive for nutrient improvement and carbon 

sequestration, where the carbon can be stored (locked) in the 

soil, improving soil structure, pH, water and nutrient 

retention, and mitigating climate change [8]. It can also be 

used as a biofuel in energy generation directly or converted 

to biomass briquettes, enhancing its energy and economic 

value [8]. It possesses unique physicochemical properties, 

such as high surface area, porosity, and surface functional 

groups, which make it an excellent adsorbent for a wide 

range of pollutants, including synthetic dyes [9, 10]. 

Additionally, biochar is derived from renewable sources 

and can be produced using waste biomass, making it an 

environmentally friendly option for wastewater treatment 
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[11]. The utilization of biochar for dye removal offers several 

advantages. Its high surface area and porosity provide ample 

sites for dye molecules to adsorb, effectively removing them 

from wastewater [12].  

The production of biochar can be achieved through 

various methods, such as hydrothermal carbonization, 

superheated steam torrefaction, and pyrolysis using a pilot 

carbonization kiln [13, 14]. The production process and the 

type of feedstock used can significantly influence the 

biochar's properties and its effectiveness in various 

applications [15]. For instance, biochar produced from 

sugarcane bagasse through a pyrolysis or gasification process 

has been used as catalysts for the biodiesel production 

process [16]. Additionally, chemical activation of biochar 

derived from pine needles and coconut shells has been 

studied to optimize the production process and improve the 

material's characteristics for specific applications [17]. 

Several methods have been developed for producing 

biochar, each with its advantages and limitations. In this 

section, we provide a brief overview of common methods for 

producing biochar, including pyrolysis, gasification, and 

hydrothermal carbonization. We discuss the principles 

underlying each method, key process parameters, and the 

characteristics of the resulting biochar products. 

Understanding the different methods for producing biochar 

is essential for optimizing its properties and tailoring its 

application to specific environmental challenges, such as dye 

pollution in water bodies. 

Pyrolysis: This is a thermo-chemical process of biomass 

conversion to a carbon neutral or better fuels and materials 

from biomass. It is a thermal decomposition of organic 

material in a controlled (insufficient) oxygen at a high 

temperature, thereby producing solid (biochar), liquid (oil), 

and gaseous products. Biochar produced during this process 

is a valuable material that can be utilized as a soil additive 

and in carbon sequestration, where the carbon can be stored 

(locked) in the soil [18]. 

Hydrothermal Carbonization (HTC): This is a process that 

converts wet biomass into biochar and biocrude oil in a high-

pressure and high-temperature environment. It is a more 

efficient method for converting wet biomass into biochar 

compared to pyrolysis, as it does not require drying of the 

feedstock [19]. 

Gasification: This is a process that converts biomass into a 

gaseous product, which can be used as a fuel, and a solid 

product, which is biochar. It is a more complex process 

compared to pyrolysis, as it involves the partial oxidation of 

biomass in a high-temperature environment [20]. 

Torrefaction: This is a mild form of pyrolysis that is used to 

produce biochar from biomass at lower temperatures 

compared to pyrolysis. It is a more energy-efficient method 

compared to pyrolysis, as it uses less energy to heat the 

biomass. The resulting biochar has a higher energy density 

compared to biochar produced through pyrolysis [21]. 

2. PROPERTIES OF BIOCHAR RELEVANT TO 

DYE REMOVAL 

The effectiveness of biochar as an adsorbent for dye 

removal is intricately linked to its unique physicochemical 

properties. Understanding these properties is essential for 

optimizing the performance of biochar-based adsorption 

processes in treating dye-contaminated wastewater. In this 

section, we explore the key properties of biochar that play a 

crucial role in its efficacy for dye removal. These properties 

include surface area, porosity, surface functional groups, 

surface charge, and structural characteristics (Fig. 1). By 

elucidating the relationship between biochar properties and 

dye adsorption behavior, we can enhance our understanding 

of the mechanisms underlying dye removal processes and 

design more efficient and sustainable strategies for 

mitigating dye pollution in water bodies. 

 

 
 

Fig. 1. Properties to improve the biochar efficiency. 

 

Numerous studies have highlighted the direct 

correlation between biochar surface area and its adsorption 

capacity for organic dyes. The extensive surface area of 

biochar provides many active sites and pore structures, 

facilitating the adsorption of dye molecules from aqueous 

solutions. Research by Yao et al. [22] demonstrated that 

biochar with higher surface area exhibited superior 

adsorption performance for various organic dyes compared 

to biochar with lower surface area. This finding underscores 

the significance of surface area in enhancing the adsorption 

capacity of biochar for dye removal. Similarly, studies by 

Wang et al. [15] and Zhang et al. [23] validated these findings, 

showing that biochar with larger surface area effectively 

removed a wide range of dye pollutants from wastewater. 

Furthermore, investigations into the effect of surface area on 

dye removal kinetics have elucidated the role of surface area 

in governing the rate of adsorption. Sterenzon et al. [24] 

observed that biochar with higher surface area exhibited 

faster dye adsorption kinetics, attributed to its increased 
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accessibility of active sites for dye molecules. This suggests 

that surface area not only influences the adsorption capacity 

but also impacts the efficiency and kinetics of dye removal 

processes. Given the crucial role of surface area in biochar, 

researchers consistently seek methods to enhance it. Truong 

et al. [25] employed KHCO3 as an effective activator to 

increase the surface area of biochar derived from Sargassum 

hemiphyllum. Their study showed the use of KHCO3 

escalated the surface area of biochar from 976 to 2024 m2g−1. 

The researchers also utilized a method involving low-

temperature pyrolysis and high-temperature copyrolysis with 

potassium hydroxide (KHCO3) to increase the surface area of 

the magnetic biochars (NMPBs) [26]. Similarly Liu et al. [27] 

uses the active reagents to expand the specific surface area to 

increase the amount of adsorption. Researchers shown that 

after the modification treatment, the specific surface area of 

the two altered biochars expanded, both exhibiting a 

mesoporous distribution (Fig. 2). The pore size generated by 

WSC was larger, while the specific surface area of WSC was 

smaller compared to that of WPC. The micropore surface 

areas and average pore sizes of the NMPBs were higher than 

those reported for porous carbon derived from copyrolysis 

with hydroxide and biomass. 

Porosity is another important property of biochar that 

affects its adsorption capacity. Moreover, the mesoporous 

and microporous structure of high-surface-area biochar has 

been found to enhance dye adsorption by providing 

additional adsorption sites and diffusion pathways. Recent 

studies have demonstrated that biochar with hierarchical pore 

structures and high surface area showed enhanced dye 

adsorption performance due to improved accessibility and 

diffusion of dye molecules into the internal pores [28, 29]. 

The KOH activated biochar has shown the increased poracity 

and hence the amount of dye removal [30]. The use of active 

agents is a trend modify the pore size and hence the surface 

area (Fig. 3). The nitrogen-doped porous biochar in the study 

had a micropore volume of 0.14 cm3/g, which contributed to 

its high adsorption capacity of 173.9 mg/g for the Reactive 

Orange 16 dye [31]. Similarly, the activated biochar 

pyrolyzed at 750 °C had a total pore volume of 0.65 cm3/g, 

which contributed to its high adsorption capacity of 65.9 

mg/g for the cationic dye [24].  

A comprehensive literature survey reveals the critical 

importance of surface functional groups in biochar for 

efficient dye removal in wastewater treatment. Surface 

functional groups, such as hydroxyl (-OH), carboxyl (-

COOH), and phenolic (-Ph) groups, play a significant role in 

facilitating the adsorption of dye molecules onto the biochar 

surface. Numerous studies have demonstrated that surface 

functional groups significantly influence the adsorption 

capacity and selectivity of biochar for organic dyes. For 

instance, Hasan et al. [32] and Ghazy et al. [33] found that 

biochar with a higher abundance of hydroxyl groups 

exhibited enhanced adsorption performance for cationic dyes 

due to electrostatic interactions between the hydroxyl groups 

and the dye molecules. Similarly, biochar modified with 

carboxyl groups showed improved adsorption efficiency for 

anionic dyes through electrostatic attraction and π-π 

interactions [34–36].  

Liu and colleagues [37] demonstrated that conventional 

carbon microspheres (CMS), after amino modification (AF-

CMS), exhibited significantly enhanced efficacy in capturing 

almost 100% of both methyl orange (MO) and tartrazine 

(TTZ).

 

 

 

 

Fig. 2. Biochar synthesis and surface area modification to increase the absorption rate. Reprinted with permission from ref. 

[27], Liu, C., Wang, W., Wu, R., Liu, Y., Lin, X., Kan, H. and Zheng, Y., 2020. Preparation of acid-and alkali-modified biochar 

for removal of methylene blue pigment. ACS omega, 5(48), pp.30906-30922. Copyright © ACS Publications 
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This remarkable improvement in performance can be 

ascribed to the electrostatic attraction between the positively 

charged amine groups on AF-CMS and the anionic dyes. 

Furthermore, research by Zhang et al. [38] highlighted the 

importance of surface functional groups in controlling the 

surface chemistry and reactivity of biochar for dye adsorption. 

They found that biochar with a higher density of phenolic 

groups exhibited superior adsorption capacity for aromatic 

dyes, attributed to the formation of π-π interactions between 

the phenolic groups and the aromatic rings of the dye 

molecules. Additionally, the surface functional group 

modifier like KOH and chitosan (CHKBC) exhibited an 

enriched composition of functional groups such as -COOH, -

NH2, and -OH, leading to a substantial increase in the 

maximum adsorption of MB by the biochar from 8.83 mg g- 

1 to 62.04 mg g- 1, a 7.03-fold increase [39].

 
 

Fig. 3. SEM micrographs of the base biochar without activation (a,b) and with activation (with KOH) (c-h). Reprinted with 

permission from ref. [30], Priyanka, Vashisht, D., Ibhadon, A.O., Mehta, S.K. and Taylor, M.J., 2024. Enhanced Wastewater 

Remediation Using Mesoporous Activated Wheat Straw Biochars: A Dye Removal Perspective. ACS Sustainable Resource 

Management, 1(2), pp.355-367. Copyright © ACS Publications. 

 

Surface modification of biochar serves not only to 

augment its dye removal capacity but also to play a vital role 

in the regeneration and reusability of biochar-based 

adsorbents. Yang et al. [40] demonstrated that functional 

groups on the biochar surface can undergo chemical reactions 

with dye molecules during adsorption, leading to the 

formation of stable complexes. This enables the desorption 

of dye molecules from the biochar surface under certain 

conditions, allowing for the regeneration of the adsorbent and 

its subsequent reuse in wastewater treatment processes. The 

functional groups also influence adsorption mechanisms 

differently for various contaminants, affecting regeneration 

differently. For instance, functional groups rich in electrons 

promote π-interactions and hydrogen bonds during dye 

adsorption, leading to higher regeneration efficiency [41].  

 In wastewater treatment processes, biochar serves as an 

effective agent for removing dyes. This effectiveness stems 

from the surface charge characteristics of biochar, which are 

predominantly determined by its functional groups and the 

pH conditions of the environment. These surface charges 

enable biochar to engage in electrostatic interactions with dye 

molecules present in the wastewater. Essentially, biochar acts 

as a sort of magnet, attracting and binding dye molecules to 

its surface. The specific functional groups on the biochar's 
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surface influence the nature of these interactions. For 

instance, functional groups like carboxyl (-COOH) or 

hydroxyl (-OH) can impart negative charges to the biochar 

surface under certain pH conditions, facilitating attraction to 

positively charged dye molecules. 

 

 

 
 

Fig. 4. Effect of pH on the absorption capacity of biochar. Reprinted with permission from ref. [42], Wei, F., Zhu, Y., He, T., 

Zhu, S., Wang, T., Yao, C., Yu, C., Huang, P., Li, Y., Zhao, Q. and Song, W., 2022. Insights into the pH-dependent adsorption 

behavior of ionic dyes on phosphoric acid-activated biochar. ACS omega, 7(50), pp.46288-46302. Copyright© ACS 

Publications. 

 

 Conversely, in acidic conditions, protonation of these 

functional groups can result in a positively charged biochar 

surface, enhancing the adsorption of negatively charged dye 

molecules through electrostatic attraction. This interplay 

between the surface charge of biochar and the characteristics 

of dye molecules ultimately determines the adsorption 

capacity and efficiency of the process. By understanding and 

optimizing these factors, wastewater treatment systems can 

leverage biochar effectively to remove dyes, thereby 

contributing to cleaner water resources and environmental 

sustainability. 

 The surface charge of biochar, primarily influenced by 

functional groups and pH conditions, plays a crucial role in 

electrostatic interactions with dye molecules, ultimately 

affecting adsorption capacity and efficiency [42]. Studies 

shown that adsorption of ionic dyes with single-polarity 

charges like methyl orange (MO), methylene blue (MB), and 

crystal violet (CV), the electrostatic force predominantly 

determines the pH-dependent character. However, for RhB, 

factors such as electrostatic force, self-aggregation, and H-

bonding collectively contribute to its pH-dependent 

adsorption behavior, resulting in a synergistic effect (Fig. 4). 

Likewise, favorable adsorption of cationic dyes such as MB 

and CV occurs under alkaline conditions. Conversely, it 

exhibits enhanced adsorption of anionic dyes like MO under 

acidic conditions. Several studies have highlighted the impact 

of surface charge on the adsorption behavior of biochar 

towards different types of dyes [43]. For example, Xu et al. 

[44] investigated the adsorption of cationic dyes onto biochar 

and found that the positively charged surface of biochar 

facilitated the electrostatic attraction and adsorption of 

cationic dye molecules. Conversely, the adsorption of anionic 

dyes and observed that biochar with a negatively charged 

surface exhibited enhanced adsorption capacity for anionic 

dye molecules through electrostatic interactions [45]. 

Similarly, Ullah et al. [41] demonstrated the surface charge 

of adsorbent materials plays a crucial role in the adsorption 

process. The activated biochar (ABC600) had a pHpzc value 

of 3.0, suggesting it may have a negative charge above this 

pH and a positive charge below it. Thus, at pH values higher 

than pHpzc, cationic dye adsorption is favored, while at pH 

values lower than pHpzc, anionic dye adsorption is more 

likely to occur. The study emphasized the significance of pH-

dependent surface charge in regulating the adsorption 

behavior of biochar. The nitrogen-doped porous biochar in 

the study had a positive surface charge at pH 2.0, which 
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contributed to its high adsorption capacity of 173.9 mg/g for 

the Reactive Orange 16 dye [46]. Similarly, the activated 

biochar pyrolyzed at 750 °C had a positive surface charge at 

pH 2.0, which contributed to its high adsorption capacity of 

65.9 mg/g for the cationic dye [47]. 

 

3. RECENT ADVANCES IN BIOCHAR-BASED 

DYE REMOVAL 

Recent studies have focused on optimizing the 

adsorption processes of biochar for efficient dye removal [48, 

49]. Modification of biochar properties, synthesis of 

composite materials, and optimization of adsorption 

processes are crucial aspects in enhancing the efficiency and 

applicability of biochar-based adsorbents for pollutant 

removal from various environmental matrices. Several 

studies have explored enhancing biochar properties through 

innovative methods. For instance, the research on milkvetch-

derived biochar involved decorating it with ZnO-Ce 

nanoparticles, leading to enhanced photocatalytic 

performance for reactive blue 19 dye removal [50]. This 

modification strategy demonstrates a novel approach to 

improving biochar's effectiveness in dye removal processes.  

Likewise, the simple chemical modification is also 

popular for the biochar modifications. This mainly includes 

acid modification, alkaline modification, oxidation agent 

modification, and modification with metal salts. Acid 

modification aims to eliminate impurities like metals and add 

acid functional groups to biochar surfaces using acids like 

hydrochloric, sulfuric, nitric, phosphoric, oxalic, and citric 

acid [49, 51]. Alkaline modification seeks to boost surface 

area and oxygen-containing functional groups using agents 

like potassium hydroxide and sodium hydroxide [52, 53]. 

Furthermore, for oxidative biochar modification, potassium 

permanganate and hydrogen peroxide are commonly used 

oxidizing agents. These agents play a crucial role in 

introducing functional groups onto the biochar surface, 

thereby altering its physicochemical properties [54–56].   

The modification of biochar using metal salts or metal 

oxides can certainly alter its characteristics significantly. By 

incorporating metals or metal oxides into biochar, the 

sorption capacity for heavy metals can be enhanced, leading 

to improved adsorption, catalytic performance, and magnetic 

properties [57–59]. This modification process involves 

mixing the metals or metal oxides with raw materials before 

pyrolysis or soaking biochar in metal solutions under specific 

conditions, resulting in changes in physicochemical 

properties and functional groups on the biochar surface [57–

59]. The presence of metal oxides in biochar can enhance its 

sorption capacity for pollutants, facilitate their removal from 

water and sewage, and improve interactions such as 

electrostatic attraction and surface complexation, making 

biochar an effective material for wastewater treatment 

technologies [58].  

Apart from the abovementioned methods of 

modification, biochar materials were also employed to 

enhance the surface area of biochar. Additionally, biochar 

modification using organic solvents has been documented. 

Methanol, for instance, facilitates esterification between 

carbonyl groups and municipal solid waste-derived biochar, 

resulting in a notable increase in adsorption capacity for 

compounds like tetracycline [60]. Ammonia gas modification 

introduces nitrogen-containing groups onto the biochar 

surface, as demonstrated by Xiong et al. [61]. Moreover, 

steam and gas purging modifications involve two distinct 

processes: first, the pyrolysis of the feedstock, followed by 

the modification of biochar through the purging of carbon 

dioxide or ammonia gas [62]. 

 

 
 

Fig. 5. Recovery and reuse of the biochar of effective use. 

 

4. CHALLENGES AND FUTURE PERSPECTIVES  

The challenges and future perspectives of biochar as a 

biosorbent for water remediation are multifaceted. The 

effectiveness of biosorption processes heavily relies on the 

choice of biosorbent, which in turn is influenced by various 

factors. Researchers emphasize the importance of selecting 

biosorbents that are abundant and freely available in nature, 

encouraging the exploration of biochar as a promising option 

due to its availability [63]. Despite its potential as a cost-

effective and environmentally friendly alternative for 

pollutant removal, some researchers have questioned its 

commercial viability due to complexities in physicochemical 

and biological factors involved in pollutant removal. 

Consequently, there is a growing emphasis on enhancing 

biosorption capacity, selectivity, kinetics, and the possibility 

of regeneration or re-use of biosorbents.  

The significant challenge facing the practical 

application of biochar for dye removal is the regeneration of 

spent biochar, which is critical for sustainable and cost-

effective operations [64,65]. Additionally, the scalability of 

biochar-based dye removal processes presents a hurdle, 

requiring efficient and large-scale production methods to 

meet industrial demands [66]. Moreover, the cost-

effectiveness of biochar production and utilization impacts its 
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economic viability for dye removal on a larger scale [50]. 

Future research should prioritize the development of 

effective regeneration techniques for spent biochar to 

enhance its reusability and sustainability in dye removal 

processes [67, 68]. Regeneration techniques for spent 

biosorbents play a crucial role in reducing production costs 

and energy consumption, contributing to sustainable waste 

management practices. Addressing scalability issues 

necessitates research into optimizing biochar production 

methods and scaling up manufacturing processes to meet 

industrial needs [50, 69]. Exploring innovative and cost-

effective approaches for biochar production and application 

can overcome economic barriers, making biochar-based dye 

removal more commercially viable [69]. Various techniques 

for recovering and regenerating spent adsorbents, such as 

magnetic separation, filtration, thermal desorption, chemical 

desorption, supercritical fluid desorption, advanced oxidation 

processes, and microbial-assisted regeneration, are discussed 

[70] (Fig. 5). Furthermore, research into advanced biochar 

materials, composites, or nanocomposites can enhance the 

efficiency and effectiveness of biochar in dye removal 

processes, improving overall performance and sustainability. 

Modification techniques, such as ionizing radiation, offer 

environmentally friendly alternatives to chemical 

modification, enhancing fibre compatibility without 

compromising original features. Moreover, continuous 

market research is essential to understand industrial 

requirements and drive innovation in biochar-based dye 

removal. By addressing these challenges and focusing on 

future research directions, the practical application of biochar 

for dye removal can be optimized, leading to more 

sustainable, efficient, and cost-effective solutions in water 

treatment and environmental remediation. 

 

5. CONCLUSIONS 

In conclusion, the review highlights the urgent need for 

sustainable and efficient methods to address dye pollution in 

water bodies, which poses significant threats to aquatic 

ecosystems and human health. Biochar has emerged as a 

promising solution due to its unique physicochemical 

properties and environmental advantages. The review 

explores the key properties of biochar relevant to dye 

removal, emphasizing the importance of surface area, 

porosity, surface functional groups, surface charge, and 

structural characteristics in enhancing its adsorption capacity. 

Recent advances in biochar-based dye removal, including 

modification techniques and synthesis of composite materials, 

have shown promising results in improving the efficiency and 

applicability of biochar-based adsorbents. However, several 

challenges need to be addressed to realize the full potential of 

biochar in water remediation, including regeneration of spent 

biochar, scalability issues, and economic viability. Future 

research should focus on developing effective regeneration 

techniques, optimizing production methods, exploring 

innovative approaches for biochar synthesis, and advancing 

biochar materials to overcome these challenges and pave the 

way for more sustainable, efficient, and cost-effective 

solutions in dye removal and environmental remediation. 
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