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ABSTRACT: Vehicles have become an intrinsic part of our lives as one of the most popular ways of private transportation. 

Even though it provides comfort and safety, private transportation poses road safety risks. Road fatalities are increasing due to 

traffic, high speed, and driver error. As a result, safety is a top priority in vehicle manufacturing and operation. The 

advancements in the automobile industry strive to provide increased safety benefits compared to its previous generations. 

Many modern vehicles include driver assistance systems that aid drivers in various ways. These systems offer helpful 

information about traffic, congestion levels, blockage, alternative routes to avoid congestion, etc. When a threat is detected, 

the driver assistance systems may take control of the vehicle from the driver and undertake simple tasks to complex manoeuvres. 

It also enables road safety, better driving, and reduce fatalities by limiting human error. Such vehicles incorporating the 

automated driving systems to communicate with the outside world are called Connected and Autonomous Vehicles (CAVs). 

CAV has emerged as a transformative technology in the automobile sector that has a great potential to change our daily life. 

Although the ever-increasing use of CAV has numerous advantages, the potential drawbacks, such as security and vulnerability 

to hacking, are not negligible. CAVs use a variety of sensors to build a virtual map of their surroundings to drive in the correct 

lane within the speed limit, avoid collisions, and detect obstacles in their immediate physical environment. 
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1. INTRODUCTION 
 

In recent years, Automobile Industries have competed to 

launch the first fully Autonomous Vehicle (AV). In the future, 

we will see a lot of selfdriving cars around the world. Many 

companies like Ford, Toyota, Volvo, Tesla, etc., have been 

taking test drives in recent years. In 2017, Ford spent $1 

billion on Artificial Intelligence (AI) start-up Argo AI [1].  

In 2019, Ford’s Argo AI had put $15 million into forming an 

AV research Centre. In 2015 Toyota invested $1 billion to 

develop an AV. Volvo's joint venture with Uber spent $300 

million to develop next-generation self-driving cars [2]. 

BMW with Daimler spent $250 million to work on the 

development of self-driving cars.  

Many Automobile industries have invested in developing 

Avs [3]. An AV can operate itself and perform necessary 

functions without any human intervention through the ability 

to sense its surroundings. An AV utilizes a fully automated 

driving system to allow the vehicle to respond to external 

conditions that a human driver would manage. It relies on 

advanced AI and Machine Learning (ML) systems to 

understand their environment and react to commands. AVs 

are also known as self-driving cars, driverless cars, or robotic 

cars. The self-driving car is becoming a standard as these 2 

technologies continue to mature. Connectivity and 

automation are two separate forms of technology that are 

often mentioned in the same breath – Connected and 

Autonomous Vehicles (CAVs). If these technologies can 

work in tandem, they might solve the problems of traffic and 

driver mistake, making roads safer and healthier for 

everyone. Many people throughout the world see self-driving 
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vehicles as the transportation industry's next big technical 

leap forward. Their expected revolutionary effects on world 

safety include, but are not limited to, improved transportation 

efficiency, less congestion, and fewer accidents [4]. A long-

awaited technological revolution in the transportation 

industry is about to begin, thanks to the improvements that 

have been in the works for the last several years. A lot of 

people's dreams will soon come true, or the world will be 

struck hard by an unexpected reality.  

A number of CAVs have incorporated different 

technical developments to bring about self-driving 

automobiles, which will provide safer and more efficient 

transportation options [5]. To detect their environment, AVs 

use sensors placed all around the vehicle. Range 

measurements, lane marker identification, and road anomaly 

detection (e.g., holes and pits) are the primary applications of 

Light Detection and Ranging (LIDAR). The RADAR system 

uses radio waves to follow other vehicles. When an AV gets 

close to an obstacle, the time it takes for the radio waves to 

return from the obstruction to the device determines the 

distance, angle, and speed of the obstacle. Operating at 24, 

74, 77, and 79 GHz, respectively, are short-range, medium-

range, and long-range radars. Video cameras can also detect 

traffic signals and scan road signs. Since the data produced 

by each device's sensors is structured differently, 

sophisticated AI-powered software will subsequently analyze 

all of these inputs. The actuators in the cars use the processed 

data to accomplish things like map routes, regulate three axes 

of steering, braking, and accelerating, and avoid obstructions. 

It is critical to check the program's integrity when 

updating a CAV's software. Malicious apps may be used by 

attackers to steal privileges or acquire access, inject 

malicious code into the software installed in the car, or even 

encourage the download of updated apps with harmful intent. 

Malicious software may impersonate legitimate programs 

while secretly collecting user input in order to steal account 

information, activate suspicious service ports, or save 

permission for future use. By establishing contact with the 

command and control server, such malicious software might 

potentially facilitate further remote assaults. Consequently, 

safeguarding vehicle software is of utmost importance 

whenever a communication channel is established between 

the vehicle and the surrounding infrastructure or when an 

external device, such a smartphone, is linked to the car via an 

internal interface [6]. 

For ECU authentication and stream authorization,  

demonstrated the use of an asymmetric cryptographic method 

based on the Advanced Encryption Standard (AES). Every 

message stream is allowed and the asymmetric keys for 

stream access are provided to the ECUs during the 

authentication process, which is done against a central 

security module utilizing stream authentication. The 

computational feasibility of altering or inserting data packets 

is rendered impossible by this study. Additional processing 

and data transmission time is a cost that has to be considered 

when building a real-time cryptography solution. While the 

specific delay that occurred is not disclosed by the study, they 

do state that the "impact of our approach is small." Despite 

the promising results, this study has not been integrated into 

any new vehicle designs at this time. Each tire has a "direct" 

little device called a tyre-pressure monitor system (TPMS) 

[7] that regularly updates the vehicle's management system 

with data relevant to that tire. Considering the complexity of 

the complete vehicle, this sensor is modest and has a 

rudimentary purpose. Nevertheless, it deserves examination 

due to current attention and privacy issues. A basic sensor's 

ability to affect the car and the driver in such a way is 

worrisome. 

 

 

 

2. LITERATURE SURVEY 

 

A recently study examined the present state-of-the-art 

defense mechanisms for Autonomous Driving mechanisms 

(ADSs) and a range of potential threats to these systems [8]. 

An exhaustive analysis of the ADS process is the first step of 

the study. This includes physical and cyber threats, as well as 

adversarial attacks on various deep learning models. Many 

promising areas of study have been proposed to enhance the 

safety of autonomous driving systems that rely on deep 

learning. These areas include training models to be more 

resilient, testing and verifying models, and detecting 

anomalies using cloud or edge servers. Machine learning 

presents a number of challenges in vehicular networks, which 

were thoroughly examined from the researcher study [9]. 

Furthermore, they showcase the CAVs' machine learning 

pipeline and go over a plethora of possible security issues 

associated with ML technology. In particular, their studies 

deal with adversarial ML attacks on CAVs, and they lay forth 

a plan to defend against these attacks in different contexts. In 

order to identify intelligent black hole attacks, Existing study  

[10] developed a system that is exclusive to autonomous and 

connected vehicles (ACVs). While building the system, four 

important factors are examined: Hop Count, Destination 

Sequence Number, Packet Delivery Ratio (PDR), and End-

to-End delay (E2E). They tested IDBA's efficacy against 

AODV using the Black Hole (BAODV), Intrusion Detection 

System (IdsAODV), and EAODV algorithms [11]. Detailed 

simulation results show that the IDBA outperforms state-of-

the-art methods on many key metrics, including packet loss 

rate, throughput, E2E, routing overhead, and DDR. Existing 

study [12] introduced the Targeted Attention Attack (TAA) 

method for actual road sign assaults. Particularly noteworthy 

are the following contributions: Using the soft attention map, 

they accomplished three things: 1) highlighted important 

pixels while ignoring zero-contributed areas, which helps 

with natural disturbance generation; 2) developed a universal 

attack that optimizes a single perturbation or noise using a set 

of training images and the attention map; and 3) made an 

easy-to-optimize basic objective function. Experimental 

results reveal that the TAA technique is superior to the well-

known RP2 method in terms of attack success rate (up more 

than 10%) and perturbation loss (down around 25%). A novel 

approach to aiding a host vehicle in assessing the mobility 

behavior of a target vehicle and subsequently the accuracy of 
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data transmission in cooperative vehicular communications 

was proposed by Existing study [13]. At first, the detecting 

system takes the positional data from the V2V signals it has 

received and uses it to mimic the target vehicle's motion 

behavior on the host vehicle. It also uses the unscented 

Kalman filter to forecast the car's future states. Whether it's 

from a Sybil attack or cooperation, the simulation findings 

demonstrate that the system can identify anomalous reports 

with a precision of more than 0.97. 

To aid host cars and V2X edge apps in validating the 

legitimacy of data exchange in 5G vehicular networks, 

Existing study [14] proposed a possible cooperative 

verification approach. First, the host vehicle's detecting 

systems (local detector) and the RSU's (global detector) glean 

information about the target vehicle's status and 

characteristics from the CAMs that have been received. 

Using simulation, their study shows a significant impact on 

detection performance and reaction time, especially for 

quickly identifying Sybil and fake data assaults. An aggregate 

operator called the metric temporal counting quantifier was 

proposed by Existing study to describe a policy depending on 

the number of times specific sub-policies are fulfilled in a 

given past time period. This policy language is based on a 

past-time version of MTL. While not all policies can be 

monitored in a trace-length independent way, they did show 

that a large class of rules specified using the language can be 

and provided a specific strategy for doing so. They proved 

that the proposed method can successfully build and oversee 

quantitative rules drawn from real-world investigations by 

building and testing the algorithm using an existing Android 

monitoring framework and an AV simulation platform. 

In their demonstration of a new attack vector, Existing 

study [15] showed how existing embedded devices may have 

their data stealthily leaked. The Device Tree, a data structure 

that describes a computer's hardware characteristics, was 

used to get specific details on the 35-system target. Using this 

knowledge, they devised a clandestine assault that transmits 

data straight from memory to analog peripherals in an effort 

to cross the air gap. The assault stays in the peripherals, 

undetected by the main CPU, by purposefully short-circuiting 

certain components. The defense was also tested for overall 

efficacy and performance overhead, which led to little 

performance cost and strong detection of the underlying 

threat. Existing study [16] laid the groundwork for a thorough 

comprehension of the good and negative uses of machine 

learning, and they lauded the weaknesses of ML systems in 

the face of traditional and ML-based attacks. Within the 

framework of cybersecurity and CPS, we explore the positive 

and negative applications of machine learning. We have now 

covered the dark side of machine learning, or the 

weaponization of machine learning, which includes 

increasing infiltration and obfuscation tactics, disrupting 

system stability and service, and violating user privacy. 

Recently, AVs have been troubled by data thefts and worries 

about sensing and tracking technologies. A secure and 

intelligent sensing and tracking architecture based on 

Blockchain was introduced by Existing study [17] for AV 

systems that use communication networks beyond 5G. 

Secure object detection and tracking via BC is guaranteed by 

the proposed architecture, which deploys AI algorithms at the 

edge servers. Any application requiring low latency, high 

reliability, and robust security may benefit from the proposed 

system, which surpasses its predecessors. 

An approach to real-time data analysis based on 

machine learning was created by Existing study [18] to 

identify malicious activity in massive amounts of network 

traffic. They started by setting up a detection architecture that 

the intrusion detection module needed to identify and prevent 

malware from infecting the automobile using a smartphone. 

After that, they compared their new algorithm to the current 

ones, came up with a cost-effective way to detect malicious 

activities in a network setting, and then, tested it to make sure 

it was accurate. An new approach to evaluating the risks of 

AV accidents was proposed by Existing study [19] via the 

comparison to a more recognized and quantifiable risk: 

human behavior. Autonomous vehicle (AV) safety 

predictions compared to human drivers are based on this 

technique. Calculating the risk of an accident involving an 

AV may be done by comparing its behavior to that of safe 

human drivers. To compare the driving behaviors of humans 

and autonomous vehicles, Convolutional Neural Networks 

(CNN) are used to simulate an end-to-end AV model. An 

algorithm known as Gaussian Processes (GP) is used to 

identify contextual driving abnormalities. A risk score is then 

computed based on the frequency and severity of these 

anomalies. This paper provides a foundation by addressing 

the difficulties of AV risk modeling. To identify fake over-

the-air software upgrades in autonomous vehicles, Existing 

study  [20] developed an enhanced update system. The 

update framework's security was enhanced with the help of a 

Convolutional Neural Network (CNN). In a very precise 

manner, the suggested system can distinguish between 

malicious and safe software executables. 

 

 

 

3. PROPOSED WORK 

 

Time series classification can be done in a variety of ways. 

The majority of them have two main phases: the first one 

utilizes some method to measure the difference between time 

series to categorize them (dynamic time warping is a good 

example), and the second stage uses some tools (simple 

statistics, advanced mathematical methods, etc.) to depict the 

time series as feature vectors. An algorithm can be applied in 

the second stage to classify the data. It may be anything from 

k-nearest neighbors and Support Vector Machines (SVMs) to 

deep neural network models. But there is one thing that all 

these methods have in common: all need feature engineering 

as a distinct stage before classification. However, there exist 

models that not only include feature engineering into one 

framework but also remove the need for human feature 

engineering. They also extract features and provide 

meaningful time series representations autonomously. 

Recurrent and Convolutional Neural Networks (CNNs) are 

widely used models. According to research, employing 
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CNNs for time series classification has many significant 

advantages compared to other approaches. They are 

incredibly noise-resistant models that can extract highly 

informative, deep, time-independent features. 

The architecture of a typical CNN is depicted in Figure 

1, which is composed of a sequence of steps. SS denotes the 

sub-sampling of the feature map. The architecture's initial 

few stages are made up of two layers: convolutional and 

pooling. And, the final step is made up of a fully-connected 

layer and a standard classifier. The convolutional layers have 

several filters that combine the input from the preceding layer 

with a set of weights to create a feature output, referred to as 

a feature map. Neurons are linked directly to the input data 

points in every filter, multiplying the data points with weights. 

The weights of all the neurons in a single filter are shared, 

reducing the time and complexity of CNN optimization. 

Lastly, the result is subjected to an activation function, 

commonly a hyperbolic tangent, Rectified Linear Units 

(ReLU), and sigmoid function as shown in Figure 1. 

A pooling layer has been frequently used after a 

convolution layer to obtain a lower resolution representation 

of the convolution layer activations via sub-sampling. 

Neighbor pooling units collect input from patches that have 

been shifted by more than one row or a column so that the 

representation's dimensions are reduced, and invariance is 

created to tiny shifts and distortions. Weighted pooling, Max 

pooling and Mean pooling are the choices for pooling 

function that calculates statistics on the activations. The 

fully-connected layer is the next layer in CNN after numerous 

combinations of convolutional and pooling layers. The fully-

connected layer works in the same way as a standard 

multilayer neural network which can be used in a variety of 

classification models. Feature extraction is a technique for 

extracting the optimum features from data to address a 

particular issue. New features have been produced that 

capture a dataset's fundamental attributes and represent them 

in a small space, making learning easier. In the case of a 

dataset that is too huge with too high processing expenses, 

this strategy must be used. Using feature extraction, a smaller 

subset of data is generated that is nonetheless reflective of the 

input variables. The extraction of this information can assist 

the model in making better judgments by revealing the links 

that resulted in output from an input. 

Consider a length n and width k of time series. In a 

multivariate time series, the length denotes the number of 

time steps, and the width represents the number of variables. 

For electroencephalography, it might be the number of 

channels (nodes on a person's head), while for a 

meteorological time series, it could be factors like 

temperature, humidity, and pressure.  The length of the 

convolution kernels can be adjusted, but their width always 

seems to be the same as the time series. Convolution is 

performed by moving the kernel in one direction from the 

start to the finish of a time series. 

 

 

 
 

Fig. 1. Block diagram for the proposed work. 

 

 

 
 

Fig. 2. Proposed work structure analysis. 
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It will not migrate to the left or right if images are convoluted 

in two dimensions. The kernel's constituents are multiplied 

by the time series elements they cover at any given point from 

Figure 2. 

The multiplication results were then combined 

altogether, and the value was subjected to a nonlinear 

activation function. The kernel travels forward along the time 

series to generate the next value, and the resulting value 

forms an element of a new "filtered" univariate time series. 

The number of convolution kernels is the same as that of the 

new "filtered" time series. Various characteristics and 

features of the initial time series are captured in each of the 

subsequent filtered series, according to the length of the 

kernel. The following step is to apply global max-pooling to 

each of the filtered time series vectors, and the greatest value 

from each is considered. These values are combined to 

produce a new vector, and the maximum of these vectors is 

the resulting feature vector which may be fed into a 

conventional, fully connected layer as shown in Figure 3. 

 

 
 

Fig. 3. Development Model Block Diagram of proposed 

work. 

 

 

3.1. PRE-PROCESSING 

 

Before transferring the raw data (RW) from the dataset to the 

input layer, pre-processing is performed. Employing Python 

tools such as pandas, NumPy, and sklearn, this pre-

processing phase removes the null values from the raw input 

dataset. It also removes noise and duplicated data from RW. 

The pre-processed output 𝑅𝑊𝑝𝑟𝑒 can be described as the de-

noising is performed on the raw data from the dataset first, 

and null values and duplicate values are removed. 

 

 

3.2. INPUT LAYER 

 

The pre-processed data 𝑅𝑊𝑝𝑟 from the previous phase is fed 

into the input layer. The convolution layer is the most 

important layer in CNN for feature extraction. This layer 

extracts the most significant aspects from the previous input 

layer's data. This layer includes learnable kernels or filters 

that are employed in the feature extraction process. DFCNN 

generates the one-dimensional feature maps by performing a 

convolutional operation on the input data in this layer. 

Various features of this layer can be retrieved 𝑅𝑊𝑚  by 

using multiple kernels. The kernel detects the specific 

features in this layer's input feature map at all points. This 

aids in weight distribution in the feature map. This 

characteristic of local networking and weight-sharing 

effectively reduces network complexity and the number of 

training parameters. For the feature extraction, N 

convolutional layers (C1C2C3. CN)  are used. The work 

considers five convolutional layers (N = 5)  which extract 

deep features. The number of filters used in these five 

convolution layers are 128 of size16 × 1 , 64 of size 8 ×
1,32 of size 4 × 1,16 of size 4 × 1, and 8 of size 4 × 1. 

Kernel slides are applied to the input in each convolutional 

layer to generate a feature map. The network structure of the 

proposed DFCNN is shown in Figure 4. The output of Nw  

convolutional layer can be given as, 

 

𝐶𝑁𝑂𝑃 = ReLU (𝑅𝑊pre ∗ 𝑊𝑁 + 𝑏𝑁)      (1) 

 

Where 𝐶𝑁𝑜𝑝  indicates the output of the Nth  convolution 

layer, 𝑅𝑊𝑝𝑤  represents the input data, 𝑊𝑁  and 𝑏𝑁 

represents the Nth  layer's weight and bias, respectively. The 

result is subjected to the Rectified Linear Unit (ReLU) 

activation function following the convolution process. 

The neurons are stimulated with the ReLU. This ReLU 

is vital in neural networks because the input is translated to 

output in network nodes. It enables the neural network to 

learn nonlinear dependencies and minimize disappearing 

gradients with a better learning rate. It also has a faster rate 

of convergence. In general, linear activation functions are 

utilized in the output layer of networks for predictions. The 

ReLU function with input vector x can be written as follows: 

 

ReLU (𝑥) = max(0, 𝑥)         (2) 

 

 

3.3. MAX-POOLING LAYERS 

 

In CNN, every convolution layer is followed by a pooling 
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layer. The preceding convolution layer's output will be used 

as the input for the current pooling layer. N = 5 is used here, 

and the pooling layers are denoted as (𝑃1, 𝑃2, 𝑃3 … 𝑃𝑣) . 

Pooling is classified into two types: maximum pooling and 

average pooling. This max-pooling layer can be used to 

reduce noise. It may remove noisy activations while also de-

noising and reducing dimensionality. 

In contrast, average pooling reduces dimensionality as 

part of the noise suppression process. As a result, max-

pooling outperforms average pooling. The preceding 

convolutional layer's output is transmitted to this max-

pooling layer, which downsamples the feature map in this 

max-pooling layer. This layer's features like speed, vertical 

acceleration, and GPS are extracted from the dataset. The 

output from the pooling layer can be presented by: 

 

𝑃𝑁 = Max𝑁∈𝑆 𝐶𝑁𝑂𝑃         (3) 

 

Where 𝑃𝑁 represents the pooled feature map. S denotes the 

pooling region in the feature map. The DFCNN model is 

trained using features extracted in the previous layer. The 

abnormality displayed in CAV is identified in this layer by 

employing the trained model. When compared to other 

existing approaches, the proposed DFCNN has a lower 

training loss and error rate. The output of the fully connected 

layer is represented as: 

 

𝐹𝐶𝐿𝑜𝑃 = Predict (𝑃𝑁)                            (4) 

 

 

3.4 OUTPUT LAYER 

 

It is the final layer in the proposed DFCNN, and it indicates 

whether or not the anomaly is present in the CAV. This layer's 

final output OLOP can be denoted as: 

 

𝑂𝐿𝑂𝑃 = {
0, if OP is Normal 

1, if OP is abnormal 
       (5) 

 

If there is no anomaly in CAV, the output will be 0; otherwise, 

it will be 1. If an abnormality in the CAV is discovered, rapid 

action must be performed before the vehicle loses its full 

control. 

 

 

3.4.1 Adam Optimization 

 

Adam is the optimization technique employed in this work, 

and it aids in weight updation utilizing training data. This 

Adam optimization uses the advantages of Adaptive Gradient 

(AdaGrad) and Root Mean Square Propagation (RMSProp) 

techniques. For every parameter, it calculates the individual 

adaptive learning rate θ. Adam optimizer uses the 

exponentially decaying average of prior gradients 𝑚𝑖−1 , 

which is the same as momentum: 

 

𝑉𝑖 = 𝛽1𝑉𝑖−1 + (1 − 𝛽1)𝑔2𝑖

𝑚𝑖 = 𝛽2𝑚𝑖−1 + (1 − 𝛽2)𝑔𝑖
       (6) 

 

In the above equations, 𝑉  represent the variance, and 𝑚𝑖 

denotes the mean values. The usage of these variables allows 

Adam's modified rule to be represented as follows: 

 

𝜙𝑖+1 = 𝜃𝑖
𝜇

√𝑣𝑙+𝜀
          (7) 

 

This optimization technique updates weights and selects the 

best learning rate for accurate prediction. 

 

 

 

4. RESULTS AND DISCUSSION 

 
The experiment is carried out on an Intel Core i7 3.5 GHz 

processor computer with 4 GB of NVIDIA GPU-enabled 

RAM. The model is implemented in Python utilizing DL 

frameworks – Keras. CNN models have increasingly been 

employed in various industries to handle anomaly detection 

and classification problems. This chapter presented a 

DFCNN model for identifying anomalies in the CAV. To 

improve accuracy, the DFCNN model is trained using an 

instant anomaly category, and the hyperparameters are tuned 

using a DL approach. 

 

 

 
 

Fig. 4. Network Structure of Proposed DFCNN. 
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4.1. HYPERPARAMETERS 

 

Hyperparameters are parameters whose values control the 

learning process and determine the values of model 

parameters that a learning algorithm ends up learning. 

Hyperparameter-tuning is essential to find the possible best 

sets of hyperparameters to build the model from a specific 

dataset. The process of training a model involves choosing 

the optimal hyperparameters that the learning algorithm will 

use to learn the optimal parameters that correctly map the 

input features (independent variables) to the labels or targets 

(dependent variable) such that some form of intelligence can 

be achieved. The hyperparameters of the proposed DFCNN 

are listed in Table 1. 

 

 

Table 1. Hyperparameters of the Proposed DFCNN. 

 

Hyperparameter Value 

Learning rate 0.001 

Batch size 100 

Epochs 100 

Filters 128 

Optimizer Adam 

Activation function ReLU 

 

 

4.2. CONFUSION MATRIX 

 

A confusion matrix is used to evaluate the efficiency of the 

proposed method on the test data. The rows of the confusion 

matrix contain information regarding the true class, while the 

columns contain information regarding the predicted class 

from Figure 5.  

 

 
 

Fig. 5. Confusion Matrix for the Proposed DFCNN. 

There are four outputs in this matrix: True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

When the output is positive, TP denotes that it belongs to the 

positive class category. When the output is negative, TN 

signifies that it belongs to the negative class category. When 

the outcome is negative, FP signifies that it belongs to the 

positive class category. When FN represents a negative 

outcome, it relates to the negative class category.  

The number of FPs and FNs vary each class due to class 

differences and the number of data sets. The confusion matrix 

can be used to determine the TP, TN, FP, and FN values at 

each position on the test dataset. We extracted 12,000 records 

from the SPMD dataset. 1250 data points are used as testing 

data, 1250 data points as validation data, and 10000 data 

points as training data. TP value=2573 is the confusion matrix, 

indicating that the model accurately predicts the anomaly in 

CAV as an anomaly. TN = 480, indicating that the model 

accurately predicts no anomaly in CAV. Likewise, the FN= 

6799 indicates that the model properly predicts no anomaly 

in CAV. FP=148, indicating that the model inaccurately 

predicts an anomaly in CAV. These TP, TN, FP, and FN values 

are calculated using the confusion matrix. 

 

 

4.3 ROC CURVE 

 

The ROC curve appears to be an essential metric for problem 

classification and identification from Figure 6. This ROC is 

a probability curve that is used to plot the True Positive Rate 

(TPR) vs the False Positive Rate (FPR) at several threshold 

values to separate the signal from the noise. TPR, also known 

as sensitivity, shows how well the negative class is predicted. 

The FPR or specificity indicates how much of the model's 

negative class incorrectly predicts.  

 

 
 

Fig. 6. ROC Curve for the Proposed DFCN.  
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The Area Under the Curve (AUC) is a measure of a model's 

ability to distinguish between groups and is used to 

summarize the ROC curve. The AUC of the proposed work 

is 0.5338, and this high value suggests that the model's output 

in dividing between positive and negative groups is higher. In 

Figure 7, the ROC curve is closer to the upper left corner, 

indicating that the proposed work detects the anomaly in 

CAV more correctly than the existing techniques. 

According to Table 2, the proposed DFCNN has a high 

true positive rate compared to other existing methods such as 

isolated forest and SVM. It is evident that the proposed 

method successfully identifies many anomalies while 

producing a small number of false positives. Because the 

model is given robust training with a large amount of data, 

the proposed DFCNN detects anomalies correctly. Before 

training, the null values are removed during the pre-

processing stage. 

 

 

Table 2. ROC Curve for the Proposed DFCNN and Existing 

Models. 

 

False Positive Rate True Positive Rate 

 

 Proposed 

DFCNN 

Isolation 

Forest 

SVM 

0.0 0.0 0.0 0.0 

0.2 0.18 0.16 0.14 

0.4 0.42 0.39 0.37 

0.6 0.64 0.62 0.59 

0.78 0.9 0.87 0.85 

 

 

4.4. ACCURACY, PRECISION, AND RECALL 

 

The precision-recall curve is generated using the confusion 

matrix from the test dataset. The DFCNN has a high AUC 

score, which implies that the model is producing accurate 

(high accuracy) and mostly positive outcomes (high Recall). 

Precision is defined as the proportion of accurately labeled 

positive samples to the total number of positive samples 

classified (either correctly or incorrectly). The accuracy 

metric evaluates the model's ability to correctly interpret a 

result as positive. Precision ranges from 0 to 1. A false 

positive in anomaly detection indicates that a CAV is not 

under attack (actual negative) and has been recognized as 

being under attack (predicted anomaly). When the precision 

for the anomaly detection model is not high, the CAV loses 

complete control over the attacker. The Recall is used to 

calculate the number of correct positive predictions by 

dividing the number of true positive findings by the total 

number of samples. Figure 7 and Figure 8 compare the 

proposed DFCNN's validation accuracy, precision, and recall 

values to those of existing models such as IF and SVM. The 

greater the Recall, the more accurate the anomaly detection. 

For extracting significant features, the five convolutional and 

max-pooling layers are used. This results in more accurate 

detection accuracy due to more accurate training. The 

proposed DFCNN obtains a precision value of 97.1 percent, 

which is greater than existing models, showing that the 

proposed method performs better. 

 

 
 

Fig. 7. Accuracy Comparison of DFCNN with IF and SVM. 

 

 
 

Fig. 8. Comparison of Precision and Recall of DFCNN with 

IF and SVM.  

 

 

Furthermore, the new DFCNN obtains a recall value of 98.7 

percent, which is greater than previous models, 

demonstrating the improved performance of the proposed 

technique. 
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4.5 TRAINING AND TEST LOSS 

 

The loss function is one of the essential components of neural 

networks, and it is a prediction error of the model. Training 

data is used to train the model. Later, during the detection of 

an anomaly in CAV, test data is used. Model loss is calculated 

at both of these stages. The model loss on the training and test 

dataset for DFCNN is illustrated in Figure 9.  

 

 
 

Fig. 9. DFCNN Training and Testing Loss Comparison. 

This shows the model loss for epochs = 100. By modifying 

the weight vector values and utilizing the Adam optimization 

method, the value of loss function value is reduced with 

regard to the model's parameters. Figure 10 indicate the 

model loss of isolation forest and SVM. The training loss and 

training loss of these two methods are higher than the 

proposed DFCNN. Due to proper training with a large dataset, 

the proposed DFCNN has low test loss compared to existing 

models. 

 

 
 

Fig. 10. IF Training and Testing Loss Comparison. 

4.6 TRAINING AND VALIDATION ACCURACY 

The training accuracy and the validation accuracy of the 

proposed DFCNN are compared with IF and SVM models. 

When compared to IF and SVM, the training accuracy of 

DFCNN is higher, which is shown in Figure 11 

 

 
 

Fig. 11. SVM Training and Testing Loss Comparison 

 

 

Figure 12 shows that the proposed DFCNN has higher 

validation accuracy when compared to IF and SVM models. 

This shows the model accuracy for 100 epochs. The proposed 

DFCNN achieves a highest validation accuracy of 97.9% 

over other models which is 2.6% higher than IF and 3.2% 

higher than other models. 

 

 
 

Fig. 12. Comparison of Training Accuracy.  

82 



Adaptive AI architectures for autonomous systems: A hybrid deep learning framework                                                    S. Prabu et al.  

   | CompSci & AI Advances, 2024, Vol. 1, No. 2, 74-84                                            © Ariston Publications 2024. All rights reserved.                                                     

5. CONCLUSION 
 

Connected and Autonomous Vehicles (CAVs) signify a 

pivotal advancement in the automobile industry, bridging the 

gap between automation, connectivity, and enhanced road 

safety. These vehicles leverage sophisticated driver 

assistance systems and cutting-edge automated driving 

technologies to mitigate human errors, reduce collisions, and 

optimize traffic flow through real-time navigation and 

intelligent decision-making. The potential of CAVs to 

revolutionize transportation is immense, promising safer 

roads, improved mobility, and greater convenience for users. 

However, the widespread adoption of CAVs is accompanied 

by critical challenges, particularly in the realms of 

cybersecurity and system reliability. The interconnected 

nature of these vehicles, coupled with their reliance on vast 

networks of sensors and communication systems, makes 

them susceptible to hacking and cyber threats. Such 

vulnerabilities could compromise not only individual 

vehicles but also the broader transportation ecosystem. 

Therefore, addressing these concerns requires the integration 

of robust security protocols, advanced encryption methods, 

and continuous monitoring systems to safeguard data and 

prevent unauthorized access. Additionally, CAVs must 

overcome obstacles related to infrastructure readiness, 

regulatory frameworks, and societal acceptance. Investments 

in smart road networks, government policies to guide 

autonomous vehicle deployment, and public awareness 

campaigns are essential for ensuring their smooth integration 

into daily life. As CAV technologies mature, their 

transformative impact on transportation will become 

increasingly apparent, offering safer, more efficient, and 

environmentally friendly mobility solutions. By embracing 

adaptive AI architectures and prioritizing security 

innovations, CAVs can pave the way for a future where 

transportation is both intelligent and resilient. 
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