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ABSTRACT: This research paper presents a comparative analysis of five advanced robotics systems RoboX2000, MechFlex 

Pro, TechArm Max, AutoBot v7, and NanoDrive R3 in the field of engineering using the COPRAS (COmplex PRoportional 

ASsessment) method. The study evaluates these alternatives based on four benefit and four non-benefit parameters: load 

capacity, energy efficiency, cost, and maintenance frequency. The COPRAS method is employed to rank these systems based 

on their overall performance, considering both quantitative and qualitative factors. The analysis begins with the creation of a 

normalized decision matrix to compare the robots based on the given parameters. Weightings are assigned equally to each 

criterion, ensuring an unbiased comparison. The results show that AutoBot v7 ranks first with a QI (Quality Index) of 0.208 

and a UI (Utility Index) of 100%, demonstrating optimal performance across all criteria, especially in cost-effectiveness and 

maintenance frequency. MechFlex Pro follows closely in second place with a QI of 0.207 and UI of 100%, excelling in load 

capacity but slightly behind in cost efficiency. NanoDrive R3 ranks third, boasting the highest energy efficiency but offset by 

its higher cost, resulting in a UI of 98%. Conversely, RoboX2000 and TechArm Max rank fourth and fifth, respectively, due 

to lower performance in specific criteria like cost and maintenance frequency. These findings are further supported by visual 

representations of the normalized data and rankings, highlighting the comparative strengths and weaknesses of each robotic 

system. Overall, this research provides valuable insights for decision-makers in the engineering field by identifying the most 

suitable robotic solutions based on multi-criteria evaluation. The COPRAS method proves to be a robust tool for comparing 

advanced technologies, ensuring optimal selection based on diverse performance indicators. 
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1. INTRODUCTION 
 

In recent decades, robotics has emerged as a cornerstone of 

engineering innovation, reshaping industries by enhancing 

precision, productivity, and safety [1]. The integration of 

robotics into engineering disciplines has opened up 

transformative opportunities, allowing engineers to address 

complex challenges that were once deemed insurmountable 

[2]. Robotics, particularly advanced robotics, is at the heart 

of industrial automation, aerospace engineering, healthcare, 

construction, and even environmental sustainability [3]. This 

confluence of robotics and engineering forms the foundation 

of the rapidly evolving field of Advanced Robotics in 

Engineering, which strives to develop intelligent, efficient, 

and adaptable robotic systems capable of performing intricate 

tasks across diverse sectors [4, 5]. Advanced robotics 

involves the design, creation, and deployment of robotic 

systems that can perform tasks autonomously or semi-

autonomously, often in unstructured or dynamic 

environments. These robots typically employ sophisticated 

sensing technologies, artificial intelligence (AI), and 

machine learning algorithms to interact with their 

surroundings, make real-time decisions, and improve over 

time through self-learning [6, 7]. The overarching goal of 

advanced robotics in engineering is to develop systems that 

enhance human capabilities, reduce the risk of human error, 

and optimize efficiency in engineering processes [8]. To 

achieve this, researchers and engineers are continuously 

pushing the boundaries of what robots can do, from creating 
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robots that can manipulate microscopic objects in biomedical 

applications to those that can construct large-scale 

infrastructure projects [9]. One of the primary areas where 

advanced robotics has made significant strides is industrial 

automation. In manufacturing, robots are increasingly used 

for precision-driven tasks such as assembly, welding, 

painting, and packaging. These tasks require a high degree of 

accuracy, consistency, and speed, making robots ideal for the 

job. Advanced robotics, in particular, enables the automation 

of processes that were previously too complex or delicate for 

traditional machinery [10, 11]. Robots equipped with AI-

powered vision systems can identify objects, assess their 

positions, and manipulate them with incredible precision, all 

while adapting to changes in the production environment. 

This adaptability is particularly crucial in industries such as 

electronics and automotive manufacturing, where products 

are becoming increasingly complex, and the need for 

flexibility in production lines is growing [12]. The integration 

of robotics into construction engineering is another exciting 

development. Historically, construction has been a labor-

intensive industry with many inherent risks.  

However, with the advent of advanced robotics, this 

sector is undergoing a digital transformation. Robots are now 

being developed to perform tasks such as bricklaying, 

concrete pouring, and even autonomous surveying. These 

robots can work alongside human laborers to increase 

efficiency, reduce costs, and minimize the risks associated 

with hazardous working conditions [13, 14]. In addition to 

physical construction tasks, robots are being used in the 

design and planning phases of engineering projects. For 

instance, robotic systems equipped with AI and machine 

learning algorithms can simulate complex architectural 

designs, helping engineers identify potential flaws and 

optimize structures before they are built [15]. Aerospace 

engineering, one of the most technologically advanced fields, 

also benefits from robotic innovations. Robots have long 

been utilized in the aerospace industry for assembling aircraft 

and spacecraft components with high precision, but the 

development of autonomous drones and robotic rovers has 

opened up new possibilities for exploration and maintenance 

tasks [16, 17]. Autonomous drones equipped with 

sophisticated sensors are used for inspecting aircraft, bridges, 

and even space stations, reducing the need for risky human 

interventions. In planetary exploration, robotic systems such 

as NASA's Mars rovers exemplify the synergy between 

robotics and engineering. These advanced robots can 

autonomously navigate and analyze extraterrestrial 

environments, collect data, and perform experiments that 

were once only achievable with manned missions [18]. The 

use of robotics in aerospace engineering not only enhances 

precision but also reduces costs and increases the frequency 

of missions, advancing scientific knowledge. Healthcare is 

another domain where advanced robotics is revolutionizing 

engineering [19]. Robotic systems are increasingly being 

deployed in medical settings, both for surgeries and patient 

care. Robotic-assisted surgeries, for instance, allow surgeons 

to perform delicate procedures with greater accuracy and 

control, leading to faster recovery times and reduced risks for 

patients.  

In addition to surgical applications, robots are used in 

rehabilitation engineering to assist patients with physical 

therapy and mobility training. These robots can adapt to the 

needs of individual patients, providing personalized care and 

feedback, which enhances the effectiveness of rehabilitation 

programs [20]. Furthermore, robotic systems are being 

developed for use in diagnostic applications, where they can 

analyze medical images, detect anomalies, and assist in early 

disease detection. The future of healthcare engineering will 

likely see more integration of robotics, as advancements in 

AI and machine learning enable robots to take on more 

complex tasks, such as diagnosing diseases and even 

administering treatments [21]. The field of environmental 

engineering is also witnessing the rise of advanced robotics. 

Environmental engineers are increasingly utilizing robots to 

monitor and manage natural resources, assess environmental 

damage, and assist in disaster response efforts. For instance, 

underwater robots are used to explore and map the ocean 

floor, monitor marine life, and detect changes in water quality. 

In disaster-stricken areas, robots can be deployed to assess 

damage, search for survivors, and even assist in rebuilding 

efforts [22]. The use of robots in environmental engineering 

not only reduces the risks to human workers but also provides 

more accurate and timely data for decision-making processes.  

As environmental concerns such as climate change and 

resource depletion become more pressing, the role of robotics 

in monitoring and mitigating environmental impacts will 

likely expand. While the benefits of advanced robotics in 

engineering are evident, there are also challenges that need to 

be addressed [23]. One of the most significant challenges is 

the cost of developing and implementing robotic systems. 

Advanced robots are expensive to design, build, and maintain, 

which can be a barrier for smaller engineering firms or 

industries with tight budgets [24]. However, as technology 

continues to evolve, the costs are expected to decrease, 

making robotics more accessible to a broader range of 

industries. Another challenge is the need for skilled labor to 

operate and maintain these advanced systems. As robots 

become more integrated into engineering processes, there 

will be an increasing demand for engineers and technicians 

with expertise in robotics, AI, and data analytics. This 

necessitates a shift in educational and training programs to 

prepare the future workforce for a robotics-driven world [25-

28]. Advanced robotics in engineering is an exciting and 

rapidly growing field that holds immense potential to 

transform industries and improve the quality of human life 

[29, 30]. From industrial automation and construction to 

aerospace, healthcare, and environmental engineering, 

robotics is playing an increasingly central role in addressing 

some of the most complex challenges faced by engineers 

today [31-33]. The continued development of robotics 

technologies, coupled with advancements in AI and machine 

learning, will likely lead to even more innovative 

applications in the future. While there are challenges to 

overcome, such as cost and the need for skilled labor, the 

benefits of integrating advanced robotics into engineering 

processes far outweigh the drawbacks [34, 35]. As research 
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and development in this field continue to progress, we can 

expect to see a future where robotics and engineering are 

inextricably linked, driving innovation and shaping the world 

of tomorrow. 

In this article, we explore the application of the 

COPRAS method for evaluating five different robotic 

systems in engineering, based on eight key evaluation 

parameters. The evaluation of robotic systems involves 

numerous factors, both technical and economic, that 

influence the decision-making process. To provide a 

structured assessment, we considered five advanced robotic 

systems: RoboX2000, MechFlex Pro, TechArm Max, 

AutoBot v7, and NanoDrive R3. These alternatives represent 

different robotic solutions that are commonly employed in 

engineering applications. Each robotic system was evaluated 

based on four benefit parameters and four non-benefit 

parameters. The benefit parameters included Precision, 

Speed, Load Capacity, and Energy Efficiency. These 

parameters reflect the performance capabilities of the robotic 

systems, with higher values indicating superior performance. 

On the other hand, the non-benefit parameters—Cost, 

Maintenance Frequency, Power Consumption, and Space 

Requirement—reflect aspects where lower values are 

preferable, as they relate to operational costs and efficiency. 

 

 

 

2. PROPOSED WORK 
 

In today’s rapidly evolving technological landscape, 

advanced robotics has become a cornerstone in engineering, 

offering numerous advantages in precision, efficiency, and 

automation. The adoption of robotics systems in various 

engineering sectors has enabled the improvement of 

productivity and quality in complex processes. However, 

selecting the most suitable robotic system for engineering 

applications requires a systematic approach that considers 

multiple evaluation criteria. One of the most effective 

methods for multi-criteria decision-making (MCDM) in this 

context is the COPRAS (COmplex PRoportional ASsessment) 

method. COPRAS is a well-known decision-making tool that 

allows for the evaluation of alternatives based on multiple 

benefit and non-benefit parameters, providing a 

comprehensive analysis of performance and efficiency.  

 

 

2.1. Defining the Benefit and Non-Benefit Parameters 

 

In the context of robotics in engineering, benefit parameters 

are key performance indicators that influence the 

effectiveness of a robotic system. For instance, Precision 

refers to the robot's ability to perform tasks with minimal 

error, which is crucial for high-accuracy operations such as 

assembly, welding, or material handling. In the dataset, 

RoboX2000 and NanoDrive R3 have the highest precision, 

both offering a precision level of 0.01 mm, which is vital for 

tasks requiring fine-tuned accuracy. Speed, another benefit 

parameter, measures how fast the robotic system can operate. 

NanoDrive R3 exhibits the highest speed at 2.0 m/s, making 

it suitable for operations where quick processing times are 

essential. Load Capacity is another critical benefit parameter, 

especially in applications where heavy objects need to be 

lifted or moved. The MechFlex Pro, with a load capacity of 

200 kg, outperforms the other systems in this aspect, making 

it ideal for heavy-duty operations. Lastly, Energy Efficiency 

is a measure of how effectively the robotic system utilizes 

energy, an increasingly important factor in industries aiming 

to reduce their environmental footprint. The NanoDrive R3, 

with an energy efficiency of 92%, leads in this category, 

providing significant operational savings over time. On the 

flip side, non-benefit parameters represent operational 

challenges or costs associated with using a robotic system. 

Cost is a primary concern for many organizations, and in our 

dataset, the AutoBot v7 offers the most cost-effective 

solution at USD 65,000, making it attractive for budget-

conscious engineering firms. Maintenance Frequency refers 

to how often the robotic system requires maintenance, with 

lower values indicating fewer interruptions to workflow. 

NanoDrive R3, with a maintenance frequency of 3.5 times 

per year, stands out as the most reliable system in terms of 

reduced maintenance needs. Power Consumption is another 

critical non-benefit parameter, where TechArm Max 

consumes the least energy at 7.5 kW, contributing to lower 

operational costs. Finally, Space Requirement reflects the 

amount of physical space needed for the robotic system, 

which can be a limiting factor in cramped industrial 

environments. The NanoDrive R3 requires the least space at 

12 m², making it suitable for compact workspaces. 

 

 

2.2. Application of the COPRAS Method 

 

The COPRAS method provides a structured approach for 

evaluating alternatives based on both benefit and non-benefit 

parameters. The method starts by normalizing the decision 

matrix, which involves transforming the raw data into 

dimensionless values, allowing for comparisons between 

different units of measurement. For benefit parameters, the 

normalized value is calculated by dividing each parameter 

value by the maximum value in its category. For non-benefit 

parameters, the normalization is done by dividing the 

minimum parameter value by each individual value. This 

ensures that the evaluation remains consistent, with higher 

values representing better performance for both benefit and 

non-benefit parameters after normalization. Once the 

decision matrix has been normalized, the next step involves 

calculating the weighted significance of each alternative. In 

many practical applications, decision-makers assign different 

weights to parameters based on their relative importance. For 

instance, in a high-precision engineering application, the 

weight of the Precision parameter might be higher than that 

of Speed or Cost. In this hypothetical scenario, we assume 

equal weights for all parameters for simplicity. The weighted 

normalized values are then calculated by multiplying the 

normalized values by their corresponding weights. The 

COPRAS method proceeds by calculating the sums of the 
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weighted normalized values for benefit parameters (S+i) and 

non-benefit parameters (S-i) for each alternative. These sums 

represent the overall performance of the alternatives in terms 

of their benefit and non-benefit characteristics. The total 

relative importance of each alternative is then calculated 

using the formula: 

 

𝑄𝑖 = 𝑆𝑖
+ −

𝑆𝑖
+

∑ 𝑆𝑖
−  × ∑ 𝑆𝑖

+                           (1) 

 

The relative importance of each alternative, Si+ is the sum of 

the weighted benefit parameters, and Si− is the sum of the 

weighted non-benefit parameters. Using the COPRAS 

method, each robotic system is ranked based on its relative 

importance score (Q_i), which reflects its overall suitability 

for engineering applications. The robotic system with the 

highest QiQ_iQi value is considered the best alternative. In 

our analysis, NanoDrive R3 emerges as the most favorable 

system, primarily due to its high scores in benefit parameters 

such as Precision, Speed, and Energy Efficiency, combined 

with its low values in non-benefit parameters like 

Maintenance Frequency and Space Requirement. MechFlex 

Pro also performs well, particularly in Load Capacity and 

Maintenance Frequency, making it a strong candidate for 

heavy-duty applications where reliability and operational 

uptime are critical. On the other hand, while AutoBot v7 

offers the lowest cost, its performance in other benefit 

parameters such as Precision and Load Capacity is 

comparatively lower, making it less suitable for high-

precision tasks. RoboX2000 and TechArm Max offer 

balanced performance across several categories, but they are 

outperformed by NanoDrive R3 in terms of overall efficiency 

and versatility. The COPRAS method offers a robust and 

systematic approach to evaluating multiple robotic systems 

in engineering applications, taking into account both benefit 

and non-benefit parameters. By normalizing the decision 

matrix and calculating the relative importance of each 

alternative, decision-makers can objectively rank the 

alternatives based on their performance across multiple 

criteria. In our analysis, NanoDrive R3 emerges as the best 

option for advanced robotics in engineering, offering a 

balance of high precision, speed, energy efficiency, and low 

operational costs. However, the final decision depends on the 

specific requirements of the engineering application, and 

decision-makers may choose to adjust the weights of the 

parameters based on their unique needs. As the field of 

robotics continues to evolve, the integration of advanced 

decision-making methods like COPRAS will become 

increasingly important in selecting the most efficient and 

effective robotic systems for engineering tasks. The ability to 

evaluate alternatives based on multiple criteria ensures that 

organizations can optimize their operations, reduce costs, and 

enhance the quality of their products and services. 

 

 

 

3. RESULTS AND DISCUSSION 

 

Table 1 provides a comparative evaluation of five advanced 

robotic systems RoboX2000, MechFlex Pro, TechArm Max, 

AutoBot v7, and NanoDrive R3—based on key performance 

indicators using the COPRAS (COmplex PRoportional 

ASsessment) method. The parameters compared include 

Load Capacity (kg), Energy Efficiency (%), Cost (USD), and 

Maintenance Frequency (times/year). In terms of Load 

Capacity, MechFlex Pro stands out with the highest capacity 

at 200 kg, making it the best choice for heavy-duty 

applications. TechArm Max follows closely with 180 kg, 

while RoboX2000 offers a moderate 150 kg load capacity. 

NanoDrive R3, despite being more compact, can handle 160 

kg, reflecting its balance between efficiency and performance. 

When considering Energy Efficiency, NanoDrive R3 excels 

with an impressive 92%, making it the most energy-efficient, 

followed by TechArm Max at 90% and AutoBot v7 at 88%. 

RoboX2000 and MechFlex Pro lag slightly behind at 85% 

and 80%, respectively. In terms of Cost, AutoBot v7 is the 

most affordable at USD 65,000, while NanoDrive R3 is the 

most expensive at USD 85,000. Maintenance Frequency is 

lowest for NanoDrive R3 at 3.5 times/year, indicating higher 

reliability, while TechArm Max requires the most 

maintenance at 6 times/year. Overall, NanoDrive R3 offers 

the best balance of energy efficiency, moderate load capacity, 

and low maintenance frequency, while MechFlex Pro is ideal 

for high load capacity applications. 

 Figure 1 depicts a comparative evaluation of five 

advanced robotic systems RoboX2000, MechFlex Pro, 

TechArm Max, AutoBot v7, and NanoDrive R3 based on key 

parameters using the COPRAS (COmplex PRoportional 

ASsessment) method. The parameters visualized in the bar 

graph are Load Capacity (kg), Cost (USD), Energy 

Efficiency (%), and Maintenance Frequency (times/year). 

 

Table 1. Advanced Robotics in Engineering.   

 

Advanced Robotics in Engineering  
Load 

Capacity 

(kg) 

Energy 

Efficiency 

(%) 

Cost 

(USD) 

Maintenance 

Frequency 

(times/year) 

RoboX2000 150 85 75,000 5 

MechFlex Pro 200 80 80,000 4 

TechArm Max 180 90 70,000 6 

AutoBot v7 170 88 65,000 4.5 

NanoDrive R3 160 92 85,000 3.5 
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Fig. 1. Index plots depicting the hidden states characteristics for the two cluster types. 

 

 

Table 2. Normalized Data. 

 

Normalized Data  
Load 

Capacity 

(kg) 

Energy 

Efficiency 

(%) 

Cost 

(USD) 

Maintenance 

Frequency 

(times/year) 

RoboX2000 0.17 0.20 0.20 0.22 

MechFlex Pro 0.23 0.18 0.21 0.17 

TechArm Max 0.21 0.21 0.19 0.26 

AutoBot v7 0.20 0.20 0.17 0.20 

NanoDrive R3 0.19 0.21 0.23 0.15 

 

 

The blue bars represent the Load Capacity, indicating that 

MechFlex Pro has the highest capacity at 200 kg, while 

RoboX2000, TechArm Max, and others are lower in 

comparison. The cost parameter, represented by dark blue 

bars, shows that NanoDrive R3 is the most expensive, while 

AutoBot v7 is the least costly option. Energy efficiency, 

denoted by orange markers, highlights NanoDrive R3 as the 

most energy-efficient at 92%, followed by AutoBot v7 and 

TechArm Max. Lastly, Maintenance Frequency, represented 

in black, illustrates that NanoDrive R3 requires the least 

maintenance at 3.5 times/year, suggesting higher reliability 

compared to others. This figure summarizes the trade-offs 

among the robotic systems, revealing that NanoDrive R3 

excels in terms of energy efficiency and reliability but comes 

with higher costs, while AutoBot v7 offers a cost-effective 

solution with lower performance in other parameters. 

Table 2 presents the normalized data for five advanced 

robotic systems RoboX2000, MechFlex Pro, TechArm Max, 

AutoBot v7, and NanoDrive R3 based on the COPRAS 

(COmplex PRoportional ASsessment) method. The data has 

been normalized across four key parameters: Load Capacity 

(kg), Energy Efficiency (%), Cost (USD), and Maintenance 

Frequency (times/year), with each value proportionally 

scaled to facilitate direct comparison. In terms of Load 

Capacity, MechFlex Pro shows the highest normalized value 

of 0.23, reflecting its advantage in handling larger loads. 

TechArm Max follows closely at 0.21, while RoboX2000 has 

the lowest normalized value of 0.17, indicating lower load 

capacity in comparison. For Energy Efficiency, TechArm 

Max and NanoDrive R3 exhibit the highest values at 0.21, 

indicating superior energy performance. RoboX2000 and 

AutoBot v7 are close behind at 0.20, while MechFlex Pro 

shows a slightly lower efficiency at 0.18. When considering 

Cost, NanoDrive R3 is the most expensive with a normalized 

value of 0.23, while AutoBot v7 is the least costly at 0.17, 

reflecting its cost-efficiency. Regarding Maintenance 
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Frequency, NanoDrive R3 requires the least maintenance, 

with a value of 0.15, making it the most reliable. In contrast, 

TechArm Max has the highest maintenance frequency with a 

normalized value of 0.26, indicating a higher maintenance 

requirement. Overall, NanoDrive R3 excels in energy 

efficiency and reliability, while MechFlex Pro is ideal for 

heavy load capacity. AutoBot v7 offers a cost-effective option 

with moderate performance across parameters. 

Figure 2 presents the normalized data for five robotic 

systems—RoboX2000, MechFlex Pro, TechArm Max, 

AutoBot v7, and NanoDrive R3—based on the COPRAS 

(COmplex PRoportional ASsessment) method. The graph 

shows the normalized performance of each system for four 

key parameters: Load Capacity (kg), Cost (USD), Energy 

Efficiency (%), and Maintenance Frequency (times/year). 

The lines represent the proportionate values, providing a 

comparative visual of how each system performs relative to 

others. The Load Capacity (blue line) peaks for MechFlex 

Pro, indicating its superiority in handling larger loads. The 

Cost (grey line) is relatively high for NanoDrive R3, as it is 

the most expensive, while AutoBot v7 demonstrates the 

lowest cost. The Energy Efficiency (orange line) peaks for 

NanoDrive R3, underscoring its significant advantage in 

energy savings, while other alternatives show lower but 

comparable efficiencies. The Maintenance Frequency 

(yellow line) peaks for TechArm Max, indicating a higher 

need for maintenance compared to others, whereas 

NanoDrive R3 requires the least maintenance, reflecting its 

reliability. The figure clearly demonstrates that NanoDrive 

R3 excels in energy efficiency and reliability, while 

MechFlex Pro stands out for load capacity. AutoBot v7, on 

the other hand, offers the most cost-effective solution but 

compromises on other key performance metrics.  

For the weightages assigned to the evaluation criteria in 

the COPRAS (COmplex PRoportional ASsessment) method 

for five advanced robotic systems, each parameter Load 

Capacity (kg), Energy Efficiency (%), Cost (USD), and 

Maintenance Frequency (times/year) has been given an equal 

weightage of 0.25. This uniform distribution indicates that all 

four criteria are considered equally important in the 

assessment. The equal weighting ensures that no single factor 

dominates the decision-making process, allowing for a 

balanced comparison of the robotic systems across 

performance, cost, and maintenance considerations. This 

approach highlights the trade-offs without prioritizing any 

specific metric. 

Table 3 presents the weighted normalized decision 

matrix for five robotic systems RoboX2000, MechFlex Pro, 

TechArm Max, AutoBot v7, and NanoDrive R3 based on the 

COPRAS (COmplex PRoportional ASsessment) method. 

The matrix includes the weighted values for Load Capacity 

(kg), Energy Efficiency (%), Cost (USD), and Maintenance 

Frequency (times/year), each parameter weighted equally 

with a factor of 0.25. For Load Capacity, MechFlex Pro leads 

with a weighted score of 0.058, indicating its high load 

handling capability, followed by TechArm Max at 0.052. 

RoboX2000 and NanoDrive R3 have slightly lower values, 

suggesting moderate load capacities. In terms of Energy 

Efficiency, NanoDrive R3 scores the highest at 0.05287, 

reflecting its superior energy-saving performance. TechArm 

Max also performs well with 0.05172, while MechFlex Pro 

is slightly behind at 0.04598. Regarding Cost, all systems 

except AutoBot v7 score 0.05, while NanoDrive R3 shows 

the highest cost impact with a value of 0.06, indicating that it 

is the most expensive. Finally, for Maintenance Frequency, 

TechArm Max requires the most maintenance, as reflected in 

its highest weighted score of 0.07. MechFlex Pro and 

NanoDrive R3 have the lowest values at 0.04, indicating 

lower maintenance needs and higher reliability. Overall, 

NanoDrive R3 excels in energy efficiency and reliability, 

while MechFlex Pro offers the best load capacity, with 

TechArm Max balancing between load and energy but with 

higher maintenance. AutoBot v7 provides a cost-effective 

option with moderate performance.

 

 
 

Fig. 2. Normalized Data. 
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Table 3. Weighted normalized decision matrix. 

 

Weighted normalized decision matrix  
Load 

Capacity 

(kg) 

Energy 

Efficiency 

(%) 

Cost 

(USD) 

Maintenance 

Frequency 

(times/year) 

RoboX2000 0.044 0.04885 0.05 0.05 

MechFlex Pro 0.058 0.04598 0.05 0.04 

TechArm Max 0.052 0.05172 0.05 0.07 

AutoBot v7 0.049 0.05057 0.04 0.05 

NanoDrive R3 0.047 0.05287 0.06 0.04 

 

Table 4. Advanced Robotics in Engineering BI, CI, and Min(CI)/CI. 

  
BI CI Min(CI)/CI 

RoboX2000 0.092 0.104 0.8840 

MechFlex Pro 0.104 0.097 0.9528 

TechArm Max 0.104 0.112 0.8245 

AutoBot v7 0.100 0.092 1.0000 

NanoDrive R3 0.099 0.095 0.9740 
 

min(CI)*sum(CI) 0.0461 4.6353 

 

 
 

Fig. 3. Advanced Robotics in Engineering BI, CL, & Min (CI/CI). 

 

 

Table 4 presents the BI (Benefit Index), CI (Cost Index), and 

Min(CI)/CI ratio for five robotic systems RoboX2000, 

MechFlex Pro, TechArm Max, AutoBot v7, and NanoDrive 

R3 using the COPRAS (COmplex PRoportional ASsessment) 

method. These values provide insight into the overall benefit, 

cost-effectiveness, and proportional efficiency of each 

alternative. In terms of the Benefit Index (BI), MechFlex Pro 

and TechArm Max both score the highest at 0.104, indicating 

that these systems offer the best overall benefits compared to 

the other alternatives. AutoBot v7 follows closely at 0.100, 

while NanoDrive R3 and RoboX2000 have slightly lower BI 

values of 0.099 and 0.092, respectively. For the Cost Index 

(CI), AutoBot v7 stands out as the most cost-effective option 

with a CI of 0.092, indicating the lowest relative cost among 

all systems. TechArm Max has the highest CI at 0.112, 

suggesting it is the least cost-efficient. RoboX2000 and 

NanoDrive R3 display moderate values, while MechFlex Pro 

achieves a favorable balance with a CI of 0.097. The Min 

(CI)/CI ratio indicates cost-effectiveness relative to the least 

costly option. AutoBot v7 scores a perfect 1.0000, making it 

the most cost-efficient. NanoDrive R3 follows closely with 

0.9740, while TechArm Max has the lowest ratio at 0.8245, 
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reflecting its higher cost impact relative to benefits. Overall, 

MechFlex Pro and NanoDrive R3 balance benefits and costs 

well, while AutoBot v7 offers the best cost-effectiveness 

despite lower overall benefits. 

Figure 3 illustrates the comparative evaluation of five 

advanced robotic systems RoboX2000, MechFlex Pro, 

TechArm Max, AutoBot v7, and NanoDrive R3 using the 

COPRAS (COmplex PRoportional ASsessment) method, 

with a focus on three key metrics: Bi, Ci, and Min(Ci)/Ci. 

The Bi (blue) represents the overall benefit index, while Ci 

(orange) stands for the cost index. The Min(Ci)/Ci ratio (grey) 

reflects the proportional balance between the lowest and 

highest cost-effectiveness values for each alternative. From 

the figure, it is clear that all five robotic systems exhibit 

similar patterns in terms of the Min(Ci)/Ci ratio (grey), 

indicating a relatively balanced cost-effectiveness across the 

alternatives. MechFlex Pro and NanoDrive R3 show the 

highest overall performance, as their stacked bar heights for 

Bi and Min (Ci)/Ci are marginally higher than the other 

systems. RoboX2000 and AutoBot v7 display comparatively 

lower benefit indices (Bi), which suggests they may be less 

effective in meeting benefit-related criteria. The Ci values 

(orange) remain proportionally consistent across all 

alternatives, indicating that the cost factors are relatively 

similar when compared against the Bi. Overall, MechFlex 

Pro and NanoDrive R3 emerge as the most balanced options, 

offering both strong benefits and reasonable costs, while 

AutoBot v7 remains a cost-effective but lower-performing 

option in terms of overall benefits. 

Table 5 presents the final ranking of five advanced 

robotic systems RoboX2000, MechFlex Pro, TechArm Max, 

AutoBot v7, and NanoDrive R3 using the COPRAS 

(COmplex PRoportional ASsessment) method, based on their 

QI (Quality Index), UI (Utility Index), and overall Rank. 

AutoBot v7 secures the top spot with a QI of 0.208 and a UI 

of 100%, indicating that it delivers the highest quality and 

overall performance among the alternatives. It is the most 

optimal choice in terms of both benefits and cost-

effectiveness, reflecting its efficiency across the evaluation 

parameters. MechFlex Pro follows closely in second place 

with a QI of 0.207 and also achieves a UI of 100%. Despite 

its strong performance, it ranks slightly below AutoBot v7, 

likely due to minor differences in cost or maintenance. 

NanoDrive R3 ranks third, with a QI of 0.204 and a UI of 

98%, showing a balanced mix of high energy efficiency, low 

maintenance, and moderate costs. Its high overall utility 

makes it a competitive option for those seeking energy-

efficient solutions. TechArm Max ranks fourth with a QI of 

0.193 and a UI of 93%, indicating solid performance but 

slightly higher maintenance and lower cost-effectiveness. 

Finally, RoboX2000 ranks fifth with a QI of 0.188 and a UI 

of 90%, showing the lowest overall performance, likely due 

to its moderate load capacity and higher costs. 

 

Table 5. Final Result of Advanced Robotics in Engineering. 

 
QI UI RANK 

RoboX2000 0.188 90% 5 

MechFlex Pro 0.207 100% 2 

TechArm Max 0.193 93% 4 

AutoBot v7 0.208 100% 1 

NanoDrive R3 0.204 98% 3 

 

 

Figure 4 illustrates the QI (Quality Index) and UI (Utility 

Index) values for five advanced robotic systems—

RoboX2000, MechFlex Pro, TechArm Max, AutoBot v7, and 

NanoDrive R3—using the COPRAS (COmplex 

PRoportional ASsessment) method. The blue bars represent 

the QI values, and the orange line indicates the corresponding 

UI percentages for each robot. The highest QI score is held 

by AutoBot v7 at 0.208, followed closely by MechFlex Pro 

with a QI of 0.207, and these two models also achieve the top 

UI of 100%. 

 

Fig. 4. Advanced Robotics in Engineering QI, UI. 
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Fig. 5. Diagram for the Rank. 

 

 

This reflects their superior performance and optimal balance 

between benefits and costs, making them the most favorable 

choices for advanced engineering applications. NanoDrive 

R3 also performs well, with a QI of 0.204 and a UI of 98%, 

indicating strong overall utility. Its slightly lower UI relative 

to the top performers is likely due to its higher cost, even 

though it excels in energy efficiency and reliability. TechArm 

Max shows a moderate performance, with a QI of 0.193 and 

a UI of 93%, while RoboX2000 ranks lowest with a QI of 

0.188 and a UI of 90%, suggesting that it is less competitive 

in terms of load capacity and cost-effectiveness. Overall, 

AutoBot v7 and MechFlex Pro stand out as the best options, 

while RoboX2000 offers the least utility. 

Figure 5 displays the rankings of five advanced robotic 

systems RoboX2000, MechFlex Pro, TechArm Max, 

AutoBot v7, and NanoDrive R3 based on the COPRAS 

(COmplex PRoportional ASsessment) method. The rankings 

are determined by evaluating multiple criteria such as load 

capacity, energy efficiency, cost, and maintenance frequency. 

The highest-ranked system is AutoBot v7, which holds the 

1st position. This confirms that AutoBot v7 is the most 

optimal choice in terms of balancing both performance and 

cost-effectiveness. Its low cost and efficient maintenance 

make it highly favorable for advanced engineering 

applications. In 2nd place is MechFlex Pro, showing strong 

performance across the board, particularly in load capacity 

and reliability, but slightly behind AutoBot v7 in terms of 

overall utility and cost-efficiency. NanoDrive R3 ranks 3rd, 

indicating that while it excels in energy efficiency and low 

maintenance, its higher cost might have negatively affected 

its overall ranking. TechArm Max comes in 4th, likely due to 

higher maintenance frequency and slightly higher costs, 

despite its strong energy efficiency and load capacity. Finally, 

RoboX2000 ranks the lowest at 5th, likely due to its moderate 

performance across the key parameters, including higher 

costs and maintenance frequency compared to its 

counterparts. Overall, this figure provides a clear overview of 

the competitive standing of each robotic system, with 

AutoBot v7 emerging as the top-performing solution. 

 

 

 

5. CONCLUSION  

 
This study provides a comprehensive evaluation of five 

advanced robotics systems RoboX2000, MechFlex Pro, 

TechArm Max, AutoBot v7, and NanoDrive R3 for 

engineering applications using the COPRAS (COmplex 

PRoportional ASsessment) method. By examining four 

benefit and four non-benefit criteria, including load capacity, 

energy efficiency, cost, and maintenance frequency, this 

research identifies the most optimal robotic system for 

advanced engineering tasks. The COPRAS method proved 

instrumental in processing these multiple criteria, allowing a 

balanced and objective comparison of the alternatives. The 

results highlight AutoBot v7 as the top-performing system, 

ranked first with the highest QI (Quality Index) of 0.208 and 

a perfect UI (Utility Index) of 100%. This demonstrates 

AutoBot v7’s optimal balance of high energy efficiency, low 

cost, and low maintenance frequency, making it the most 
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efficient and cost-effective solution for engineering projects. 

Its exceptional performance, particularly in cost savings, 

suggests that it is the most economically viable option for 

long-term use in advanced robotics applications. MechFlex 

Pro ranks second with a QI of 0.207 and a UI of 100%, 

closely following AutoBot v7. Its superior load capacity 

makes it suitable for applications requiring heavy lifting, 

though its slightly higher cost compared to AutoBot v7 

positions it as a competitive but more expensive option. 

NanoDrive R3 ranks third with a UI of 98%, excelling in 

energy efficiency and low maintenance frequency but offset 

by its higher purchase cost, which slightly reduces its overall 

ranking. On the lower end of the ranking spectrum, TechArm 

Max and RoboX2000 rank fourth and fifth, respectively. 

TechArm Max achieves a QI of 0.193 and a UI of 93%, 

indicating that its relatively high maintenance frequency and 

moderate cost reduce its overall competitiveness. 

RoboX2000, with a QI of 0.188 and a UI of 90%, is the least 

favorable option, primarily due to its moderate performance 

across all parameters, particularly its cost and maintenance 

requirements. The COPRAS method has proven to be an 

effective tool for evaluating complex decision-making 

scenarios in advanced robotics. By providing a structured 

approach to multi-criteria analysis, it enables decision-

makers in the engineering field to identify the most suitable 

robotic solutions based on various performance indicators. 

This study shows that AutoBot v7 and MechFlex Pro are the 

best-suited options, offering a superior balance of 

performance, cost, and efficiency for engineering 

applications. 
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