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ABSTRACT: Moreover, as organizations implement robust predictive maintenance strategies, they can leverage artificial 

intelligence (AI) to minimize human intervention in data analysis, leading to more automated and self-sustaining maintenance 

systems. This progress has been demonstrated by using machine learning methods such as critical decision trees and neural 

networks to analyze operational data and predict equipment failure. The validation of machine learning models against actual 

operational data enhances the reliability of these predictive maintenance systems, providing a strong foundation for their 

broader application. The development of condition monitoring systems for industrial equipment is driven by advances in data 

transmission, storage technologies, and decreasing costs of reliable sensors. Also, Internet of Things (IoT) enables instant 

exchange of detailed data collected from various monitoring devices. This partnership creates a valuable opportunity for 

predictive maintenance by integrating efficient data collection with advanced analytics. For example, image-based predictive 

maintenance using drone camera surveys for structural monitoring is gaining popularity in various industries. The results 

indicate that Model E achieved the highest rank, while Model D had the lowest rank being attained. The value of the dataset 

Using AI for Predictive Maintenance, according to the MOORA method, Model E achieves the highest ranking. 
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1. INTRODUCTION 
 

In recent years, advances in data transmission and storage 

technologies, combined with lower costs and increased 

sensor reliability, have accelerated the development of 

condition monitoring systems for industrial equipment. 

Whereas the Internet of Things (IoT) facilitates real-time 

exchange of detailed data collected from a range of 

monitoring devices. This advance provides a significant 

opportunity to improve condition monitoring data for 

predictive maintenance by integrating effective data 

collection with thorough analysis [1]. Image-based predictive 

maintenance is rapidly being adopted in various fields. For 

example, drone camera surveys are increasingly used for 

structural monitoring. Similar to applications in renewable 

energy and health care, it aims to perform routine inspections 

to detect potential problems in buildings, bridges, and 

construction sites or telecommunications infrastructure. In 

these fields, advances in image classification driven by deep 

learning algorithms are moving towards frequent and routine 

predictive maintenance [2]. Once a comprehensive, robust 

and mature predictive maintenance strategy is implemented, 

more business opportunities arise, allowing high-value assets 

to generate additional revenue rather than simply incurring 

costs. Predictive maintenance is in line with the future of AI, 

where operations are maintained autonomously without the 

need for human intervention. In this context, AI will take 

predictive maintenance a step further by eliminating the need 

for manual analysis of samples and outputs, surpassing 

current approaches that still require some level of human 

supervision [3].  
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The aim is to implement a proof-of-concept approach in 

a controlled environment to evaluate the feasibility of using 

AI-driven machine learning as a fundamental component in 

a Predictive Maintenance System (ESPs) for Electric 

Submersible Pumps. To achieve this, data from the SCADA 

Historian database was used, containing a similar timeline of 

ESP operations, including normal operation and failure 

events, as input to a machine learning neural network [4]. We 

designed and simulated the operation of several predictive 

maintenance systems using this dataset. In our research, we 

evaluated the performance of three model classes: two 

decision-tree-based methods, Cree and random forests, as 

well as a third technique, logistic regression. Logistic 

regression was used as the basis for comparison because 

regression techniques are standard for data analysis, logistic 

regression being the usual choice when the dependent 

variable is discrete [5]. We have extended this framework to 

include neural network-based models that provide a more 

comprehensive description. These descriptive models were 

developed using artificially generated training data obtained 

from spatial block bootstrapping, as obtaining labeled 

training data for body component wear is expensive and time-

consuming. Finally, we will explain how this interpretable AI 

framework can be used in other predictive maintenance and 

health monitoring applications [6]. 

Maintenance, prevention, and repair of critical aircraft 

components, including engines, hydraulic systems, and 

actuators, depend on a routine maintenance schedule. To 

remain competitive in today's aerospace market, it is critical 

to develop innovative maintenance solutions to ensure 

maximum aircraft service life and safety [7]. The research 

questions guided a systematic mapping process, assisting 

other researchers in analyzing trends, identifying key 

research directions, and drawing valuable insights and 

perspectives in the field [8]. The infrastructure was initially 

established by connecting machines through sensors and 

gateways, resulting in an Internet of Things (IoT) platform. 

This facilitated reliable access to data from production lines 

and integrated computer systems, forming the basis for 

building a predictive maintenance system [9]. Described as 

“condition-based maintenance conducted following the 

prediction, ongoing analysis or assessment of recognized 

characteristics and critical parameters associated with 

material degradation”. The key concept of this approach is to 

analyze historical data to identify equipment behavior 

patterns and predict potential failures. After identifying these 

failure modes and predicting their timing, maintenance tasks 

can be planned in advance [10-12]. 

Our aim is to outline the most recent techniques in 

published research related to predictive maintenance using 

machine learning (ML) or deep learning (DL) methods. This 

research provides a comprehensive literature review that lays 

a strong foundation for machine learning (ML) and deep 

learning (DL) methods, highlighting their performance and 

results [13]. AI methods are adept at uncovering hidden data 

patterns and can effectively handle complex features, making 

them highly promising for accurate predictions. However, 

they demand significant computational resources, and their 

performance may vary depending on the hyper parameter 

settings chosen [14]. Recent studies have improved 

maintenance practices by exploring programming methods, 

classifying vehicle conditions, and using artificial 

intelligence algorithms to predict mechanical breakdowns. 

This method considers a number of weighted factors that can 

affect vehicle maintenance [15, 16]. By integrating these 

technologies in innovative ways, we have been able to save 

mere cost and time in maintenance. Instead, they used them 

to facilitate condition monitoring (CM) and condition-based 

maintenance (CBM), allowing operators to maintain more 

efficiently and intelligently. In other words, they developed 

and implemented a highly proactive and predictive 

maintenance model enhanced by AI and ML. This approach 

can reduce costs and reduce production disruptions by 

preventing equipment breakdowns [17-20]. 

 

 

 

2. MATERIALS AND METHODS 

 

MOORA is a multi-criteria decision-making approach that 

has significant potential to comprehensively evaluate 

alternatives in the face of considerable heterogeneity and 

multiple influencing factors. The MOORA method is a multi-

objective optimization approach designed to effectively 

address complex decision-making problems. The objective is 

to find the optimal alternative, considering a range of often 

conflicting criteria. In essence, it evaluates both favorable 

and unfavorable criteria simultaneously [23].  

 This paper presents a ratio structure approach using the 

MOORA method, where performance ratings of alternatives 

are represented as interval-valued triangular fuzzy numbers. 

The proposed extension includes a group decision-making 

framework that enables decision-makers to contribute their 

individual input. Performance evaluations can be conducted 

using exact values, intervals, or triangular fuzzy numbers. 

Individual performance ratings collected using this method is 

then transformed into group performance ratings, which are 

represented as interval-valued triangular fuzzy numbers [24]. 

 The process of determining criterion weights using 

Analytical Hierarchy Process (AHP) involves inputs from 

multiple experts or group decision making for each topic. The 

MOORA method is used for ranking because it uses 

straightforward analytical ratios, has little mathematical 

complexity, and eliminates the need for complex calculations 

or advanced math skills. Additionally, it promotes two or 

more conflicting objectives criteria while keeping the 

computation time low [25]. In real-time manufacturing, the 

decision-making process becomes more complex due to the 

varying interests and values of various decision-makers. 

Effective decision-making requires a clear, systematic and 

logical approach to solving relevant problems. This method 

considers both beneficial (enhancing) and ineffective 

(decreasing) alternatives to create the most appropriate 

alternatives and eliminate alternatives that are unsuitable for 

reinforcement [4]. The proposed port planning uses the 

MOORA method, which includes two components, i.e. rate 
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system and reference point. As this research is only 

concerned with simulating port planning, we determined the 

types and importance of objectives and alternatives 

separately. Key stakeholders include national and local 

authorities and contributing agencies. In this regard, 

consumer sovereignty applies only implicitly to the 

productive sector [6].  

 This study proposes a hybrid approach that combines the 

MOORA method with target programming, which evaluates 

qualitative and quantitative criteria to identify the best loan 

applicant firm and set optimal loan limits across firms [8]. 

The MOORA method uses both ratio structure and reference 

point approaches. Subsequent developments introduced a 

fully multiplicative form, resulting in a robust technique for 

multimodal, multi-objective optimization. Both MOORA and 

MULTIMOORA methods have been used in many studies to 

deal with complex decision-making challenges [9]. Although 

the optimal choice for the non-traditional manufacturing 

process identified by MOORA methods has a significantly 

high positive constant correlation coefficient, the user can 

select the second option for production. Method if it is 

considered unreliable due to some constraints. Ultimately, the 

final decision should be a practical consideration, ensuring 

that all possible obstacles the user may encounter are 

addressed [11]. However, high values of AT and TW present 

challenges for analyzing fleet management. The gap between 

the MOORA method and the reference point approach seems 

larger than the difference between the MOORA and multi-

MOORA methods [12]. In this context, ANP-MOORA 

methods are recommended to assess supply chain challenges 

to find optimal alternatives among various options. The ANP-

based framework successfully integrates various multi-

criteria decision-making (MCTM) methods into decision-

making processes to improve the selection of an optimal 

supply chain [13]. The MULTIMOORA method improves on 

the MOORA method by combining ratio structure, reference 

point, and absolute multiplicative form. Each criterion is 

assigned a weight based on its importance as assessed by the 

decision maker. A pair wise comparison matrix generated by 

the AHP method is used to establish these weights, and finally, 

the laptop alternatives are ranked using the MULTIMOORA 

and MOOSRA methods [15]. 

 

 

 

3. RESULTS AND DISSCUSSION 
 

Table 1 exhibits the data set using AI for predictive 

maintenance. Model E stands out with the highest cost 

savings of $25,000 and the lowest failure rate at 2%, 

indicating that it offers substantial financial benefits while 

maintaining reliability. However, its uptime of 91% is slightly 

lower than that of Model A (94%) and Model C (92%). Model 

A not only has the highest uptime but also achieves a balance 

between performance and savings, with a moderate failure 

rate of 3% and implementation time of 30 days. In contrast, 

Model D, while having the lowest cost savings of $15,000 

and the highest failure rate of 7%, may require more time to 

implement, taking 50 days. This could be indicative of its 

complexity or resource requirements. Overall, Model E 

emerges as the most advantageous in terms of cost savings 

and reliability, while Model A offers the best uptime, making 

it crucial for decision-makers to weigh these factors based on 

their specific operational needs. 

 Model E is highlighted with the highest cost savings at 

$25,000, followed by Model A and Model C, which save 

$22,000 and $20,000, respectively (Figure 1). In terms of 

uptime, Model A leads with a percentage of 94%, closely 

followed by Model C at 92% and Model E at 91%. However, 

the failure rate reveals that Model E has the lowest at 2%, 

indicating its reliability. Conversely, Model D shows the 

lowest cost savings at $15,000 and the highest failure rate of 

7%, suggesting that its performance may not justify the 

investment. Additionally, Model D requires the most 

implementation time at 50 days, which could impact its 

overall feasibility compared to the other models, particularly 

Model A, which takes only 30 days. Overall, the graph 

effectively conveys that while Model E excels in cost savings 

and reliability, Model A offers the best uptime with a 

relatively quick implementation, making it a strong candidate 

for operational considerations. 

 Table 2 shows the normalized data. The first column 

represents the first metric, where values range from 

approximately 0.4324 to 0.4618, indicating slight variation 

among the models. Model A (0.4618) shows the highest value 

in this metric, suggesting better performance in whatever 

aspect it represents, while Model D (0.4324) performs the 

lowest. In the second column, Model E (0.5487) leads, 

indicating superior performance, while Model B (0.4060) 

exhibits the weakest performance in this area. This disparity 

might suggest that Model E excels in the factor measured by 

this metric. The third column demonstrates a notable range, 

with Model D scoring the highest at 0.6897, indicating 

significant strength in this particular metric. Conversely, 

Model E (0.1971) reflects the weakest performance, 

suggesting that its overall effectiveness might be impacted in 

this aspect. 

 In this scenario, the four metrics might refer to various 

performance indicators, such as uptime, cost savings, failure 

rate, and implementation time. By assigning the same weight 

to each metric, the analysis underscores that no single factor 

should disproportionately influence the overall evaluation of 

the models. This methodology can be particularly useful in 

decision-making contexts where a holistic view is essential. 

However, while equal weights promote fairness in the 

assessment, they may not reflect real-world scenarios where 

certain metrics might hold more significance than others 

depending on specific organizational goals. For instance, in a 

highly competitive environment, uptime might be prioritized 

over cost savings, or vice versa, depending on the context. In 

summary, this uniform weighting system provides a clear 

framework for evaluating the models, ensuring a 

comprehensive assessment.  
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Table 1. Using AI for Predictive Maintenance. 

 

DATA SET 

  Uptime 

(%) 

Cost Savings 

($) 

Failure Rate 

(%) 

Implementation 

Time (Days) 

Model A 94 22,000 3 30 

Model B 90 18,500 5 45 

Model C 92 20,000 4 35 

Model D 88 15,000 7 50 

Model E 91 25,000 2 40 

 

 
 

Fig. 1. Using AI for Predictive Maintenance. 

 

 

Table 2. Normalized Data. 

 

Normalized Data 

0.4618 0.4828173 0.295599 0.33 

0.4422 0.4060055 0.492665 0.5 

0.452 0.4389249 0.394132 0.39 

0.4324 0.3291936 0.68973 0.55 

0.4471 0.5486561 0.197066 0.44 

 

Table 3 exhibits the weighted normalized DM. In the first row, 

Model A scores highest in the first two metrics with values of 

approximately 0.1155 and 0.1207, indicating strong 

performance in these areas. However, its score of 0.07 in the 

third metric suggests a significant weakness, which may 

impact its overall evaluation. Similarly, Model E shows 

promising results in the second metric with a score of 0.1372 

but struggles in the third metric at 0.05. Model D exhibits the 

highest score in the third metric (0.17), reflecting its strengths 

in that specific area, while its overall performance is 

moderate, with a lower score in the first two metrics. This 

variation illustrates how different models excel in different 

aspects, making it crucial for decision-makers to analyze 

these strengths and weaknesses comprehensively. Ultimately, 

this matrix provides a nuanced understanding of model 

performance. Stakeholders can leverage these insights to 

make informed decisions, considering not just individual 

strengths but the overall balance of performance across all 

metrics. 

 

 

Table 3. Weighted normalized DM. 

 

Weighted normalized DM 

0.11546134 0.12070433 0.07 0.0826 

0.11054809 0.10150137 0.12 0.1239 

0.11300472 0.10973121 0.1 0.0963 

0.10809147 0.08229841 0.17 0.1376 

0.11177641 0.13716402 0.05 0.1101 

 

 

Table 4 provides a table for the assessment value. Model E 

leads with an assessment value of 0.0896, indicating strong 

overall performance compared to the other models. This 

positive score suggests that Model E effectively meets the 

desired criteria and may offer the best return on investment, 

making it a prime candidate for implementation. Conversely, 

Model D has the lowest assessment value at -0.1197, 

highlighting significant shortcomings in its performance. 
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This negative value implies that Model D does not meet the 

required standards, and its adoption may lead to potential 

inefficiencies or increased costs. Similarly, Model B also 

presents a negative assessment value of -0.0350, suggesting 

that it may not be the best choice among the options available. 

Models A and C show positive values of 0.0797 and 0.0279, 

respectively, indicating they perform adequately but not as 

strongly as Model E.  

 

 

Table 4. Assessment value. 

 

Assessment value 

Model A 0.0796937 

Model B -0.0349751 

Model C 0.02786867 

Model D -0.1196632 

Model E 0.08957758 

 

 

Table 5. Ranks. 

 

Rank 

Model A 2 

Model B 4 

Model C 3 

Model D 5 

Model E 1 

 

Table 5 and Figure 2 displays the ranks. Model A follow 

closely in second place, demonstrating solid performance that, 

while not as strong as Model E, still indicates a robust 

offering. This ranking suggests that Model A could be a 

viable alternative if Model E is not selected for some reason. 

Model C holds the third position, reflecting a commendable 

performance but not enough to surpass either Model A or E. 

The ranking signifies that it still offers a competitive 

advantage compared to lower-ranked models. In the lower 

ranks, Model B is placed fourth and Model D fifth, indicating 

that these models underperform relative to their counterparts. 

Model D's last-place ranking is particularly noteworthy, as it 

may signal critical deficiencies that could hinder operational 

effectiveness if chosen. Overall, this ranking system enables 

stakeholders to prioritize their choices, emphasizing the need 

to select models that deliver optimal performance and value 

for their specific requirements. 

 Model E is highlighted as the top performer with a rank 

of 1, illustrating its superiority among the options. This visual 

emphasis reinforces its position as the most favorable choice 

based on previous assessments. In contrast, Model D is 

ranked last with a score of 5, suggesting significant 

deficiencies in performance that warrant careful 

consideration before selection. Model A and Model C occupy 

the second and third ranks, respectively, showcasing strong 

performance but not quite reaching the level of Model E. The 

upward trend from Model A to Model C reflects a competitive 

evaluation, indicating that both models have commendable 

attributes, though they lag behind the leading model. Model 

B, ranked fourth, experiences a dip in rank compared to the 

others, suggesting it is less favorable in overall performance. 

 

 
 

Fig. 2. A Rank diagram. 

 

 

5. CONCLUSION  

 
The integration of the Internet of Things (IoT) enables real-

time data exchange, allowing effective use of condition 

monitoring data in predictive maintenance. By combining 

efficient data collection with integrated analysis, businesses 

can move from reactive to proactive maintenance strategies, 

thus optimizing operations and reducing costs. Image-based 

predictive maintenance has gained traction across multiple 

sectors, including construction and telecommunications, 

where drone surveys are utilized for structural monitoring. 

These innovations, driven by deep learning algorithms, 

enable routine inspections to detect potential problems before 

they develop into costly failures. Implementing a robust 

predictive maintenance strategy not only leads to cost savings, 

but also creates new revenue opportunities as high-value 

assets become more reliable. Artificial Intelligence (AI) is 

key to improving predictive maintenance systems. By 

automating the analysis of condition monitoring data, AI 

eliminates the need for manual assessments, thereby 

increasing operational efficiency. The techniques are 

essential for building models that predict equipment failures 

using historical data. This shift towards AI-driven predictive 

maintenance aligns with the future trajectory of the industry, 

where operations will become largely self-sufficient. In our 

study, we investigated the reliability of machine learning 

models powered by AI for predictive maintenance in electric 

submersibles. Using data from SCADA systems, we have 

developed several predictive maintenance models to evaluate 

their performance in failure prediction. A systematic 

literature review conducted as part of this study underscores 

the significant impact of machine learning and deep learning 

techniques on predictive maintenance strategies. These 

approaches improve situational awareness, improve 

operational efficiency and provide reliable maintenance 

solutions. As industries increasingly adopt predictive 

maintenance, the integration of AI technologies promises to 

deliver significant advantages, including reduced downtime, 

improved safety, and optimized asset management. 
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