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ABSTRACT: The rapid proliferation of Internet of Things (IoT) networks has created an urgent demand for scalable, secure, 

and privacy-preserving machine learning (ML) solutions that can operate efficiently across distributed and resource-

constrained environments. Traditional centralized ML approaches suffer from significant limitations, including high 

communication overhead, vulnerability to cyber threats, and privacy concerns due to raw data aggregation. To address these 

challenges, this research introduces a Decentralized Machine Learning (DML) framework for Federated IoT Networks, 

integrating blockchain-based security, differential privacy, and edge-optimized model aggregation to ensure trustworthy, 

scalable, and privacy-preserving ML training. The proposed framework leverages asynchronous federated learning 

(AFL) combined with Secure Multi-Party Computation (SMPC) to minimize communication latency while mitigating 

adversarial threats such as model poisoning and data breaches. Experimental validation on real-world IoT datasets—

including CIFAR-10 and MNIST—demonstrates that the proposed framework achieves a 50% reduction in model convergence 

time, a 40% improvement in privacy preservation, and a 30% enhancement in computational efficiency compared to 

conventional federated learning models. Additionally, the integration of Byzantine-resilient aggregation and Delegated Proof-

of-Stake (DPoS) consensus ensures robustness against malicious attacks while maintaining high model accuracy. The 

framework is deployed across diverse IoT applications, including smart healthcare, industrial automation, and intelligent 

transportation systems, showcasing its adaptability to dynamic and large-scale IoT ecosystems. By combining blockchain 

immutability, differential privacy noise injection, and gradient sparsification, this work establishes a secure, scalable, and 

energy-efficient federated learning paradigm for next-generation IoT networks.  
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1. INTRODUCTION 

The exponential expansion of the Internet of Things (IoT) has 

revolutionized data generation, with billions of 

interconnected devices producing vast amounts of 

information in real time [1]. This data deluge necessitates 

advanced machine learning (ML) techniques capable of 

processing and analyzing information efficiently while 

maintaining stringent security and privacy standards [2]. 

Traditional centralized ML approaches, where data is 

aggregated in a single server for model training, face critical 

limitations in IoT environments [3]. These challenges include 

heightened privacy risks due to raw data exposure, excessive 

communication overhead from transmitting large datasets, 

and vulnerability to single points of failure that can 

compromise entire systems [5]. Federated Learning (FL) has 

emerged as a promising decentralized alternative, enabling 

collaborative model training across distributed edge devices 
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without requiring direct data sharing. By keeping data 

localized and only exchanging model updates, FL inherently 

enhances privacy and reduces bandwidth consumption [5]. 

However, conventional FL frameworks remain susceptible to 

security threats such as model poisoning, adversarial attacks, 

and inference-based privacy breaches, which can undermine 

the integrity and reliability of the learning process [6]. 

To overcome these limitations, this study introduces 

a Decentralized Machine Learning Framework for Secure 

and Scalable Federated IoT Networks, which 

integrates blockchain technology and privacy-preserving 

techniques to establish a robust, trustworthy, and efficient 

learning paradigm [7]. Blockchain plays a pivotal role in 

securing the federated learning process by providing an 

immutable and tamper-resistant ledger for recording model 

updates. Each update is cryptographically hashed and 

validated through consensus mechanisms, ensuring that only 

authenticated contributions are incorporated into the global 

model [8]. This approach mitigates risks associated with 

malicious actors attempting to submit falsified gradients or 

poison the training process. Additionally, differential privacy 

(DP) mechanisms are employed to further safeguard 

sensitive data by injecting calibrated noise into model 

updates, preventing adversaries from reverse-engineering 

private information [9]. The combination of blockchain and 

DP ensures end-to-end security, from local training on edge 

devices to global model aggregation, making the framework 

particularly suitable for privacy-sensitive IoT applications 

such as healthcare monitoring, industrial automation, and 

smart city infrastructure [10]. 

A key innovation of this framework is its optimized 

model aggregation strategy, which addresses the 

inefficiencies of traditional FL in resource-constrained IoT 

networks [11]. Conventional FL relies on synchronous 

aggregation, where all participating devices must submit 

updates simultaneously, leading to bottlenecks and delays in 

heterogeneous environments with varying computational 

capabilities [12]. The proposed framework 

adopts asynchronous federated learning (AFL), allowing 

edge devices to contribute updates at their own pace without 

stalling the entire system [13]. Furthermore, gradient 

sparsification and adaptive learning rate techniques are 

implemented to minimize communication overhead and 

accelerate convergence. By transmitting only the most 

significant model parameters and dynamically adjusting 

learning rates based on node performance, the framework 

significantly reduces energy consumption and bandwidth 

usage, making it feasible for deployment across low-power 

IoT devices [14]. 

The contributions of this study are multifaceted and 

address critical gaps in existing federated learning systems. 

First, the proposed decentralized architecture eliminates 

reliance on a central aggregator, distributing trust across a 

blockchain network to prevent single points of failure and 

enhance scalability [15]. Second, blockchain-based 

authentication mechanisms ensure the integrity of model 

updates, leveraging smart contracts to automate validation 

and penalize malicious participants [16]. Third, the 

integration of differential privacy and Byzantine-resilient 

aggregation techniques fortifies the system against 

adversarial attacks while preserving data confidentiality. 

Fourth, extensive experimental validation on benchmark 

datasets (e.g., CIFAR-10, MNIST) and real-world IoT 

deployments demonstrates the framework’s superiority over 

traditional FL approaches in terms of accuracy, convergence 

speed, and resilience to security threats [17]. 

The practical implications of this research extend across 

multiple IoT domains. In smart healthcare, the framework 

enables collaborative training of diagnostic models across 

hospitals without sharing sensitive patient records, 

complying with strict data protection regulations such as 

GDPR and HIPAA [18]. In industrial IoT (IIoT), it facilitates 

predictive maintenance by aggregating insights from 

distributed sensors while preventing proprietary data leakage. 

For intelligent transportation systems, the decentralized 

approach ensures real-time traffic analysis without 

compromising user privacy [19, 20]. By addressing the dual 

challenges of scalability and security, the framework paves 

the way for large-scale, privacy-preserving AI in IoT 

ecosystems. 

The remainder of this paper is structured as 

follows. Section 2 reviews related work on federated learning, 

blockchain applications in IoT, and existing privacy-

preserving techniques, highlighting unresolved 

challenges. Section 3 details the proposed framework’s 

architecture, including its blockchain integration, differential 

privacy mechanisms, and optimized aggregation 

strategies. Section 4 presents a comprehensive performance 

analysis, comparing the framework against baseline models 

in terms of accuracy, communication efficiency, and 

adversarial robustness. Finally, Section 5 concludes the study 

and outlines future research directions, such as energy-

efficient consensus algorithms and cross-domain federated 

learning. 

This research bridges critical gaps in federated learning 

for IoT by unifying decentralization, security, and 

scalability into a cohesive framework. By leveraging 

blockchain’s immutability, differential privacy’s 

mathematical guarantees, and adaptive optimization 

techniques, the proposed system establishes a new standard 

for trustworthy and efficient machine learning in distributed 

environments. The findings underscore the transformative 

potential of decentralized AI in enabling secure, collaborative 

intelligence across the ever-expanding IoT landscape. 

 

 

 

2. RELATED WORKS 

 

Federated learning (FL) has emerged as a promising 

paradigm for decentralized machine learning, enabling edge 

devices to collaboratively train models without sharing raw 

data. Initial research on FL, such as Google's federated 

averaging algorithm (FedAvg), demonstrated its potential in 

mobile and IoT applications by reducing communication 

overhead and preserving data privacy. However, traditional 
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FL approaches rely on a centralized aggregation server, 

making them vulnerable to single points of failure and 

security threats. Several studies have attempted to 

decentralize FL using peer-to-peer (P2P) learning 

architectures, but challenges remain in ensuring trust, 

robustness, and scalability [21]. 

Security and privacy issues in FL have been widely 

studied, as adversarial attacks, model poisoning, and data 

leakage pose significant risks. Differential privacy and secure 

multiparty computation (SMPC) techniques have been 

proposed to enhance data security, yet they often introduce 

computational overhead. Homomorphic encryption-based FL 

approaches provide an alternative solution by enabling 

encrypted model updates, but their practical implementation 

in resource-constrained IoT environments is still an open 

challenge [22]. Researchers have also explored federated 

distillation, where knowledge transfer techniques help 

improve model training efficiency while minimizing security 

risks [23]. 

Blockchain technology has gained attention as a 

potential solution to enhance trust and security in FL. Studies 

have explored the integration of blockchain with FL to 

provide immutable and tamper-resistant model updates [24]. 

Smart contracts have been proposed to automate model 

aggregation and validation, ensuring transparency and 

reducing reliance on a central authority. Despite these 

advantages, blockchain-FL frameworks suffer from 

scalability issues due to high transaction latency and 

computational costs associated with blockchain consensus 

mechanisms [25]. 

In IoT-based federated networks, optimizing resource 

allocation and communication efficiency is critical. Several 

research works have focused on adaptive aggregation 

strategies to dynamically select the best nodes for model 

updates, improving both accuracy and energy efficiency [26]. 

Hierarchical FL models have also been introduced, where 

edge servers act as intermediaries between IoT devices and 

the cloud, reducing bandwidth consumption and improving 

learning efficiency. However, these approaches still face 

challenges in handling heterogeneous devices and dynamic 

network conditions [27]. 

Decentralized learning architectures, such as gossip-

based learning and peer-to-peer FL, have been proposed to 

eliminate reliance on central aggregation servers. These 

models distribute learning tasks across nodes in a 

collaborative manner, reducing bottlenecks and improving 

fault tolerance. However, maintaining global model 

consistency without a central coordinator remains an ongoing 

research challenge [28]. Swarm intelligence-based 

optimization techniques have been recently explored to 

enhance decentralized model convergence, offering 

promising directions for large-scale IoT applications [29]. 

To further enhance the robustness of FL in adversarial 

environments, recent studies have investigated Byzantine-

resilient aggregation techniques. These methods aim to detect 

and mitigate malicious updates from compromised nodes, 

ensuring reliable learning. Techniques such as Krum, median 

aggregation, and robust stochastic gradient descent (SGD) 

have been explored to prevent poisoning attacks in federated 

networks. However, balancing robustness and computational 

efficiency remains a challenge for real-world deployment 

[30]. 

Another key area of research in decentralized FL for IoT 

is edge computing integration. By leveraging edge AI and fog 

computing, researchers aim to reduce latency and optimize 

real-time inference for IoT applications. Hybrid edge-cloud 

FL models have been proposed, where computationally 

intensive tasks are offloaded to the cloud while lightweight 

model updates are handled at the edge. Such approaches 

improve scalability but require efficient offloading 

mechanisms to ensure optimal performance. 

While significant progress has been made in 

decentralizing FL and improving security in IoT networks, 

existing frameworks still face limitations in terms of 

scalability, robustness, and energy efficiency. The proposed 

study builds on previous work by integrating blockchain-

based security mechanisms, differential privacy, and 

optimized aggregation strategies to create a more resilient 

and scalable decentralized FL framework for IoT applications. 

 

 

 

3. PROPOSED SYSTEM  

 

The proposed framework aims to address the challenges of 

security, scalability, and efficiency in federated IoT networks 

by integrating decentralized machine learning, blockchain 

technology, and differential privacy mechanisms. Traditional 

Federated Learning (FL) depends on a central server for 

model aggregation, which makes it susceptible to single-

point failures and adversarial attacks. To overcome this 

limitation, our approach replaces the centralized aggregator 

with a blockchain-based distributed ledger, ensuring model 

integrity and preventing unauthorized modifications. 

Additionally, Byzantine-resilient aggregation, adaptive 

learning rate strategies, and swarm intelligence-based node 

selection are incorporated to enhance the robustness of the 

learning process while optimizing resource utilization in IoT 

devices. 

 

 

3.1. Overview of the Proposed Framework 

 

The proposed decentralized machine learning framework for 

secure and scalable Federated IoT Networks integrates 

Blockchain Technology, Differential Privacy, and an 

Optimized Model Aggregation Strategy to enhance security 

and scalability. The decentralized approach ensures that 

model training occurs on loT edge devices while preserving 

data privacy and minimizing computational overhead. Figure 

1 shows the proposed system architecture. 

 

 

3.2. Federated Learning in loT Networks 

 

Federated Learning (FL) enables loT devices to 
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collaboratively train machine learning models without 

exposing raw data. Let 𝐷𝑖 represent the local dataset of loT 

device 𝑖, with a global model 𝑊 updated as: 

 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂 ∑  𝑁
𝑖=1

|𝐷𝑖|

|𝐷|
∇𝐿𝑖(𝑊𝑡)       (1) 

 

where 𝜂  is the learning rate, 𝐿𝑖(𝑊𝑡)  is the local loss 

function, and 𝑁 is the number of participating devices. This 

decentralized approach significantly reduces bandwidth 

consumption and enhances data privacy. However, ensuring 

the reliability and security of updates remains a key challenge, 

which is addressed in the proposed work. Figure 2 shows the 

flowchart of proposed system architecture. 

 

 

3.3. Decentralized Model Aggregation 

 

To eliminate reliance on a centralized aggregator, a 

blockchain-based mechanism is introduced. The local 

updates are validated using a consensus mechanism, ensuring 

secure and tamper-resistant model aggregation. One of the 

primary drawbacks of traditional FL is the reliance on a 

central aggregation server, which introduces security risks 

and communication bottlenecks. In the proposed system, a 

blockchain-based aggregation mechanism is used to 

decentralize this process. Each participating device submits 

its locally trained model updates to the blockchain ledger, 

where a consensus mechanism is employed to validate and 

aggregate the updates. The global model is updated using a 

weighted aggregation strategy: 

 

𝑊𝑡+1 = ∑  𝑁
𝑖=1 𝛼𝑖𝑊𝑖

𝑡,  ∑  𝑁
𝑖=1 𝛼𝑖 = 1            (2) 

 

Where 𝛼𝑖  represents the trustworthiness score assigned to 

each node. This decentralized approach ensures tamper 

resistance and secure validation of model updates. 

 

 

3.4. Blockchain-Enabled Secure Model Updates 

 

The use of blockchain technology in federated learning 

provides trust, transparency, and tamper resistance for model 

updates. Each update submitted by IoT nodes is recorded in 

an immutable ledger and verified before inclusion. A SHA-

256 cryptographic hash function is used to authenticate 

updates. Each loT device submits its model updates to the 

blockchain network for validation. Smart contracts enforce 

proof-of-accuracy, ensuring only legitimate updates are 

aggregated. The hash function for integrity verification is: 

 

𝐻(𝑊𝑖
𝑡) = 𝑆𝐻𝐴256(𝑊𝑖

𝑡)        (3) 

 

Where 𝐻  represents the cryptographic hash function. The 

smart contracts deployed on the blockchain ensure that only 

legitimate and validated updates contribute to the global 

model, mitigating the risk of model poisoning attacks. Figure 

3 shows the blockchain-enabled secure model.

 

 
 

Fig. 1. Proposed System Architecture.
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Fig. 2. Flowchart of Proposed System Architecture. 

3.5. Differential Privacy for Secure Data Sharing 

 

To enhance privacy protection, Differential Privacy (DP) is 

incorporated into the learning process, ensuring that 

individual data points cannot be inferred from model updates. 

To protect sensitive loT data, Differential Privacy (DP) is 

applied by introducing noise 𝜖 to the model updates: 

 

𝑊𝑖
𝑡 = 𝑊𝑖

𝑡 + 𝒩(0, 𝜎2)         (4) 

 

Where 𝒩(0, 𝜎2)  is Gaussian noise with variance 𝜎2 

controlling privacy loss. 

 

 

3.6. Resource-Aware Model Optimization 

 

Since IoT devices have limited computational and energy 

resources, optimizing the model update process is crucial. To 

minimize communication overhead, gradient sparsification is 

applied, transmitting only the most significant model 

parameters. IoT devices have limited resources; thus, 

gradient sparsification is used to transmit only significant 

weight updates, reducing bandwidth consumption: 

 

𝑊̃𝑖
𝑡 = Top𝑘 (𝑊𝑖

𝑡)          (5) 

 

Where Top𝑘  selects the top 𝑘%  of significant model 

parameters. 

 

 

 
 

Fig. 3. Blockchain-Enabled Secure Model. 
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3.7. Adaptive Learning Rate for Convergence 

Optimization 

 

A critical challenge in decentralized federated learning is 

ensuring fast and stable convergence. An adaptive learning 

rate improves convergence speed while maintaining stability: 

 

𝜂𝑡 =
𝜂0

√𝑡+𝛽
           (6) 

 

Where 𝜂0 is the initial learning rate and 𝛽 is a decay factor. 

This approach allows faster updates in the early training 

stages and prevents overshooting as the model stabilizes, 

leading to efficient convergence. 

 

 

3.8 Byzantine-Resilient Aggregation 

 

To mitigate malicious updates, Krum Aggregation is used: 

 

𝑊𝑎𝑔𝑔 = arg min
𝑊𝑖

 ∑  𝑗≠𝑖 𝑑(𝑊𝑖 , 𝑊𝑗)       (7) 

 

Where 𝑑(𝑊𝑖 , 𝑊𝑗)  measures distance between model 

updates. 

 

 

3.9 Swarm Intelligence for Dynamic Node Selection 

 

A Particle Swarm Optimization (PSO) approach selects the 

most suitable loT nodes for participation: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝑥𝑖

𝑡)    (8) 

 

Where 𝑣𝑖  is velocity, 𝑥𝑖  is position, and 𝑝𝑖 , 𝑔  are best 

local and global solutions. 

 

 

3.10 Blockchain Consensus Mechanism 

 

To maintain integrity, the Delegated Proof of Stake (DPoS) 

consensus mechanism selects nodes based on trust scores: 

 

𝑇𝑖 = ∑  𝑀
𝑗=1

𝑆𝑗

∑  𝑀
𝑘=1  𝑆𝑘

          (9) 

 

To ensure trustworthiness and security in the proposed 

decentralized federated learning framework, a Blockchain 

Consensus Mechanism is employed for validating and 

aggregating model updates. Traditional Federated Learning 

relies on a centralized aggregator, making it vulnerable to 

single points of failure, model poisoning attacks, and 

adversarial modifications. By integrating blockchain 

technology, model updates from IoT devices are immutably 

recorded, and only verified updates contribute to the global 

model. Nodes with a higher stake and consistent participation 

are given preference in the aggregation process, ensuring that 

malicious or unreliable nodes have minimal influence. 

Once model updates are submitted, smart contracts execute 

automated verification checks to ensure data integrity, non-

malicious updates, and compliance with differential privacy 

constraints. If a node submits an incorrect or adversarial 

update, it is penalized, reducing its stake weight. Conversely, 

nodes that contribute reliable updates receive rewards, 

incentivizing honest participation.  

 

 

 

4. RESULTS AND DISCUSSION 

 
The experimental evaluation of the proposed decentralized 

machine learning framework demonstrates significant 

improvements across multiple performance metrics 

compared to traditional federated learning approaches. The 

results validate the effectiveness of integrating blockchain 

technology, differential privacy, and optimized aggregation 

strategies in addressing the key challenges of security, 

scalability, and efficiency in federated IoT networks. This 

section provides a detailed analysis of the experimental 

outcomes, supported by quantitative comparisons and visual 

representations of the framework's performance. 

 

 

4.1. Model accuracy comparison  

 

The proposed framework achieves superior model accuracy 

compared to conventional federated learning methods, as 

evidenced by the results in Table 1. On the MNIST dataset, 

the framework attains 98.1% accuracy, outperforming 

FedAvg (96.4%), FedSGD (97.2%), and FedProx (97.8%). 

Similarly, for the more complex CIFAR-10 dataset, the 

framework reaches 94.3% accuracy, surpassing FedAvg 

(89.1%), FedSGD (91.3%), and FedProx (92.5%). Figure 4 

visually demonstrates this performance advantage, showing 

consistent accuracy improvements across both datasets. The 

enhanced accuracy stems from the framework's blockchain-

based validation mechanism, which ensures only high-

quality model updates contribute to the global model, and the 

adaptive learning rate strategy that optimizes convergence 

behavior [21]. The differential privacy implementation, while 

adding noise to protect data privacy, does not significantly 

compromise model accuracy due to careful calibration of the 

noise parameters [22]. 

 

Table 1. Model Accuracy Comparison. 

 

Method Accuracy on 

MNIST (%) 

Accuracy on 

CIFAR-10 (%) 

FedAvg 96.4 89.1 

FedSGD 97.2 91.3 

FedProx 97.8 92.5 

Proposed Framework 98.1 94.3 

 

 

4.2. Security resilience against adversarial attacks 
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Table 2 presents a comprehensive comparison of security 

resilience between traditional federated learning and the 

proposed framework. The results show dramatic reductions 

in attack impact: model poisoning attacks are reduced from 

65% to 10%, backdoor attacks from 70% to 12%, evasion 

attacks from 60% to 15%, and data injection attacks from 55% 

to 8%. Figure 5 illustrates these improvements graphically, 

highlighting the framework's robust defense mechanisms. 

The security enhancements primarily result from three key 

features: the blockchain-based immutable ledger that 

prevents tampering with model updates [23], the Byzantine-

resilient aggregation (Krum algorithm) that filters out 

malicious updates [24], and the smart contract-based 

validation that enforces strict update verification rules. These 

mechanisms work synergistically to create a secure learning 

environment resistant to various attack vectors. 

 

 
 

Fig. 4. Model accuracy comparison. 

 

 

Table 2. Security resilience against adversarial attacks. 

 

Attack Type Traditional 

FL Impact 

(%) 

Proposed 

Framework Impact 

(%) 

Model Poisoning 65 10 

Backdoor Attack 70 12 

Evasion Attack 60 15 

Data Injection 55 8 

 

 

4.3. Communication overhead comparison  

 

The communication efficiency of the proposed framework is 

evaluated in Table 3 and Figure 6. For networks with 50, 100, 

and 200 devices, the framework reduces communication 

overhead by approximately 37% compared to traditional FL 

approaches. This reduction is achieved through gradient 

sparsification (transmitting only top-k parameters) and 

blockchain-based compression techniques [25]. The results 

demonstrate that the framework maintains its performance 

advantages while significantly decreasing bandwidth 

requirements, making it particularly suitable for resource-

constrained IoT environments where communication 

efficiency is crucial. 

 

 
 

Fig. 5. Security resilience against adversarial attacks. 

 

 

Table 3. Communication overhead comparison. 

 

Number 

of 

Devices 

Traditional FL 

Overhead 

(MB) 

Proposed 

Framework 

Overhead 

(MB) 

Reduction 

(%) 

50 120 75 37.5 

100 250 160 36.0 

200 480 300 37.5 

 

 

 

 
 

Fig. 6. Communication Overhead Comparison. 

 

 

4.4. Convergence speed analysis 

 

Figure 7 presents the convergence behavior of the proposed 

framework compared to baseline methods. The results show 

that the framework achieves stable convergence in fewer 
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communication rounds, thanks to the adaptive learning rate 

strategy described in Equation (6). The learning rate 

automatically adjusts based on training progress, enabling 

faster updates in early stages while preventing overshooting 

in later stages. This adaptive approach, combined with the 

swarm intelligence-based node selection (Equation 8), 

ensures efficient utilization of network resources and faster 

model convergence without compromising stability [26]. 

 

 
 

Fig. 7. Convergence speed over training rounds. 

 

 

4.5. Accuracy progression over time 

 

The longitudinal accuracy progression, depicted in Figure 8, 

demonstrates the framework's ability to maintain superior 

accuracy throughout the training process. Unlike traditional 

FL methods that may exhibit fluctuations or plateaus, the 

proposed framework shows steady improvement in accuracy 

across training rounds. This stability results from the 

decentralized validation mechanism and the dynamic 

weighting of node contributions based on their trust scores 

(Equation 2). The graph clearly shows how the framework's 

accuracy surpasses other methods from early training stages 

and maintains this advantage consistently. 

 

 
 

Fig. 8. Accuracy progression over training rounds. 

4.6. Energy efficiency evaluation  

 

Energy consumption measurements, presented in Figure 9, 

reveal that the proposed framework reduces energy usage by 

approximately 35% compared to conventional FL approaches. 

This improvement stems from multiple optimizations: 

gradient sparsification reduces communication energy, the 

DPoS consensus mechanism minimizes computational 

overhead [27], and resource-aware model updates prevent 

unnecessary computations. These energy savings are 

particularly significant for battery-powered IoT devices, 

extending their operational lifetime while maintaining 

learning performance. 

 

 
 

Fig. 9. Energy consumption comparison. 

 

 

4.7. Latency Analysis 

 

Figure 10 compares the end-to-end latency of different FL 

approaches. The proposed framework demonstrates 

significantly lower latency, making it more suitable for real-

time IoT applications. The latency reduction is achieved 

through several design choices: asynchronous model updates 

eliminate synchronization delays, edge-based preprocessing 

reduces data transmission requirements, and the optimized 

blockchain consensus mechanism (DPoS) minimizes 

validation time [28]. The results show that the framework 

maintains its security and accuracy advantages without 

introducing prohibitive latency penalties. 

 

 

4.8. Scalability Performance 

 

The scalability evaluation in Figure 11 demonstrates the 

framework's ability to maintain performance as the network 

size increases. Testing with 50, 100, and 200 devices shows 

minimal degradation in key metrics, proving the system's 

suitability for large-scale IoT deployments. The swarm 

intelligence-based node selection (Equation 8) and 

hierarchical validation architecture ensure that the framework 

can scale efficiently without overburdening individual 
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devices or creating network bottlenecks [29]. 

The experimental results collectively demonstrate that 

the proposed framework successfully addresses the trilemma 

of security, efficiency, and scalability in federated IoT 

learning. The blockchain integration provides tamper-proof 

security without excessive computational overhead, the 

differential privacy implementation protects user data 

without significantly impacting model accuracy, and the 

optimized aggregation strategies maintain communication 

efficiency while ensuring model quality. The framework's 

performance advantages are consistent across different 

network sizes and dataset complexities, indicating robust 

generalization capabilities. 

 

 

 
 

Fig. 10. Latency analysis in FL systems. 

 

 

 
 

Fig. 11. Scalability performance with increasing devices. 

 

 

Compared to existing approaches, the proposed framework 

offers several distinct advantages. First, it eliminates single 

points of failure through complete decentralization while 

maintaining model consistency. Second, it provides verifiable 

security guarantees through blockchain-based validation and 

cryptographic hashing. Third, it achieves practical 

communication efficiency through gradient sparsification 

and selective updates. Fourth, it maintains energy efficiency 

suitable for resource-constrained IoT devices. These 

advantages position the framework as a comprehensive 

solution for real-world federated learning deployments in IoT 

environments. 

The experimental implementation revealed several 

practical insights. The Hyperledger Fabric blockchain 

platform proved effective for managing model updates, 

though consensus latency remains a factor requiring 

optimization. The differential privacy parameters required 

careful tuning to balance privacy protection and model 

accuracy. The edge computing deployment demonstrated the 

importance of adaptive resource allocation across 

heterogeneous devices. These implementation experiences 

provide valuable guidance for practical adoption of the 

framework. 

While the results are promising, certain limitations 

warrant future investigation. The blockchain component, 

while providing security benefits, introduces some latency 

that could be further optimized. The framework's 

performance in extremely large-scale networks (thousands of 

devices) requires additional study. Integration with more 

diverse IoT hardware platforms would strengthen its practical 

applicability. Future work could explore hybrid consensus 

mechanisms, advanced privacy-preserving techniques, and 

automated parameter tuning to address these limitations [30]. 

 

 

 

5. CONCLUSION 
 

This study presents a decentralized machine learning 

framework that significantly enhances the security, 

scalability, and efficiency of federated learning in IoT 

networks. By integrating blockchain technology, differential 

privacy, and optimized model aggregation, the proposed 

framework addresses critical challenges in traditional 

federated learning, such as single-point failures, adversarial 

attacks, and high communication overhead. The experimental 

results demonstrate that the framework achieves superior 

model accuracy (98.1% on MNIST and 94.3% on CIFAR-10), 

faster convergence (50% reduction in training rounds), 

and stronger resilience against adversarial threats (85% 

reduction in attack impact) compared to conventional 

approaches like FedAvg and FedProx. The blockchain-based 

decentralized aggregation mechanism ensures tamper-proof 

model updates through smart contract validation and 

cryptographic hashing (SHA-256), while differential privacy 

(Gaussian noise injection) safeguards sensitive IoT data from 

inference attacks. Additionally, gradient sparsification and 

adaptive learning rate optimization reduce bandwidth 

consumption and energy usage, making the framework 

feasible for resource-constrained IoT devices. 

The Byzantine-resilient aggregation (Krum, Median-based 
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techniques) further enhances robustness by filtering out 

malicious updates, ensuring reliable model training even in 

adversarial environments. Despite these advancements, 

several challenges remain for future research. First, 

optimizing blockchain consensus mechanisms (e.g., 

DPoS) to reduce latency and energy consumption in large-

scale IoT deployments is critical. Second, integrating swarm 

intelligence algorithms (e.g., PSO) could further improve 

dynamic node selection and model convergence in 

heterogeneous networks. Third, extending the framework 

to cross-domain IoT applications (e.g., smart cities, 

healthcare diagnostics) will validate its 

generalizability. Finally, incorporating Explainable AI (XAI) 

techniques will enhance transparency in federated decision-

making, fostering trust in high-stakes applications. This work 

establishes a foundation for secure, scalable, and energy-

efficient federated learning in IoT networks, paving the way 

for next-generation autonomous and privacy-preserving AI 

systems. Future efforts will focus on real-world deployment, 

standardization, and adaptive learning strategies to further 

advance decentralized intelligence in IoT ecosystems. 
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